4,040 research outputs found

    PieceTimer: A Holistic Timing Analysis Framework Considering Setup/Hold Time Interdependency Using A Piecewise Model

    Full text link
    In static timing analysis, clock-to-q delays of flip-flops are considered as constants. Setup times and hold times are characterized separately and also used as constants. The characterized delays, setup times and hold times, are ap- plied in timing analysis independently to verify the perfor- mance of circuits. In reality, however, clock-to-q delays of flip-flops depend on both setup and hold times. Instead of being constants, these delays change with respect to different setup/hold time combinations. Consequently, the simple ab- straction of setup/hold times and constant clock-to-q delays introduces inaccuracy in timing analysis. In this paper, we propose a holistic method to consider the relation between clock-to-q delays and setup/hold time combinations with a piecewise linear model. The result is more accurate than that of traditional timing analysis, and the incorporation of the interdependency between clock-to-q delays, setup times and hold times may also improve circuit performance.Comment: IEEE/ACM International Conference on Computer-Aided Design (ICCAD), November 201

    Timing Measurement Platform for Arbitrary Black-Box Circuits Based on Transition Probability

    No full text

    Hybrid computer Monte-Carlo techniques

    Get PDF
    Hybrid analog-digital computer systems for Monte Carlo method application

    Design and modelling of variability tolerant on-chip communication structures for future high performance system on chip designs

    Get PDF
    The incessant technology scaling has enabled the integration of functionally complex System-on-Chip (SoC) designs with a large number of heterogeneous systems on a single chip. The processing elements on these chips are integrated through on-chip communication structures which provide the infrastructure necessary for the exchange of data and control signals, while meeting the strenuous physical and design constraints. The use of vast amounts of on chip communications will be central to future designs where variability is an inherent characteristic. For this reason, in this thesis we investigate the performance and variability tolerance of typical on-chip communication structures. Understanding of the relationship between variability and communication is paramount for the designers; i.e. to devise new methods and techniques for designing performance and power efficient communication circuits in the forefront of challenges presented by deep sub-micron (DSM) technologies. The initial part of this work investigates the impact of device variability due to Random Dopant Fluctuations (RDF) on the timing characteristics of basic communication elements. The characterization data so obtained can be used to estimate the performance and failure probability of simple links through the methodology proposed in this work. For the Statistical Static Timing Analysis (SSTA) of larger circuits, a method for accurate estimation of the probability density functions of different circuit parameters is proposed. Moreover, its significance on pipelined circuits is highlighted. Power and area are one of the most important design metrics for any integrated circuit (IC) design. This thesis emphasises the consideration of communication reliability while optimizing for power and area. A methodology has been proposed for the simultaneous optimization of performance, area, power and delay variability for a repeater inserted interconnect. Similarly for multi-bit parallel links, bandwidth driven optimizations have also been performed. Power and area efficient semi-serial links, less vulnerable to delay variations than the corresponding fully parallel links are introduced. Furthermore, due to technology scaling, the coupling noise between the link lines has become an important issue. With ever decreasing supply voltages, and the corresponding reduction in noise margins, severe challenges are introduced for performing timing verification in the presence of variability. For this reason an accurate model for crosstalk noise in an interconnection as a function of time and skew is introduced in this work. This model can be used for the identification of skew condition that gives maximum delay noise, and also for efficient design verification

    Design of a Digital Temperature Sensor based on Thermal Diffusivity in a Nanoscale CMOS Technology

    Get PDF
    Temperature sensors are widely used in microprocessors to monitor on-chip temperature gradients and hot-spots, which are known to negatively impact reliability. Such sensors should be small to facilitate floor planning, fast to track millisecond thermal transients, and easy to trim to reduce the associated costs. Recently, it has been shown that thermal diffusivity (TD) sensors can meet these requirements. These sensors operate by digitalizing the temperature-dependent delay associated with the diffusion of heat pulses through an electro-thermal filter (ETF), which, in standard CMOS, can be readily implemented as a resistive heater surrounded by a thermopile. Unlike BJT-based temperature sensors, their accuracy actually improves with CMOS scaling, since it is mainly limited by the accuracy of the heather/thermopile spacing. In this work is presented the electrical design of an highly digital TD sensor in 0.13 µm CMOS with an accuracy better than 1 ºC resolution at with 1 kS/s sampling rate, and which compares favourably to state-of-the-art sensors with similar accuracy and sampling rates [1][2][3][4]. This advance is mainly enabled by the adoption of a highly digital CCO-based phasedomain ΔΣ ADC. The TD sensor presented consists of an ETF, a transconductance stage, a current-controlled oscillator (CCO) and a 6 bit digital counter. In order to be easily ported to nanoscale CMOS technologies, it is proposed to use a sigmadelta modulator based on a CCO as an alternative to traditional modulators. And since 70% of the sensor’s area is occupied by digital circuitry, porting the sensor to latest CMOS technologies process should reduce substantially the occupied die area, and thus reduce significantly the total sensor area
    corecore