17,655 research outputs found

    Segmentation of the left ventricle of the heart in 3-D+t MRI data using an optimized nonrigid temporal model

    Get PDF
    Modern medical imaging modalities provide large amounts of information in both the spatial and temporal domains and the incorporation of this information in a coherent algorithmic framework is a significant challenge. In this paper, we present a novel and intuitive approach to combine 3-D spatial and temporal (3-D + time) magnetic resonance imaging (MRI) data in an integrated segmentation algorithm to extract the myocardium of the left ventricle. A novel level-set segmentation process is developed that simultaneously delineates and tracks the boundaries of the left ventricle muscle. By encoding prior knowledge about cardiac temporal evolution in a parametric framework, an expectation-maximization algorithm optimally tracks the myocardial deformation over the cardiac cycle. The expectation step deforms the level-set function while the maximization step updates the prior temporal model parameters to perform the segmentation in a nonrigid sense

    An artificial immune systems based predictive modelling approach for the multi-objective elicitation of Mamdani fuzzy rules: a special application to modelling alloys

    Get PDF
    In this paper, a systematic multi-objective Mamdani fuzzy modeling approach is proposed, which can be viewed as an extended version of the previously proposed Singleton fuzzy modeling paradigm. A set of new back-error propagation (BEP) updating formulas are derived so that they can replace the old set developed in the singleton version. With the substitution, the extension to the multi-objective Mamdani Fuzzy Rule-Based Systems (FRBS) is almost endemic. Due to the carefully chosen output membership functions, the inference and the defuzzification methods, a closed form integral can be deducted for the defuzzification method, which ensures the efficiency of the developed Mamdani FRBS. Some important factors, such as the variable length coding scheme and the rule alignment, are also discussed. Experimental results for a real data set from the steel industry suggest that the proposed approach is capable of eliciting not only accurate but also transparent FRBS with good generalization ability

    Left-ventricle myocardium segmentation using a coupled level-set with a priori knowledge

    Get PDF
    This paper presents a coupled level-set segmentation of the myocardium of the left ventricle of the heart using a priori information. From a fast marching initialisation, two fronts representing the endocardium and epicardium boundaries of the left ventricle are evolved as the zero level-set of a higher dimension function. We introduce a novel and robust stopping term using both gradient and region-based information. The segmentation is supervised both with a coupling function and using a probabilistic model built from training instances. The robustness of the segmentation scheme is evaluated by performing a segmentation on four unseen data-sets containing high variation and the performance of the segmentation is quantitatively assessed

    A High-Order Scheme for Image Segmentation via a modified Level-Set method

    Get PDF
    In this paper we propose a high-order accurate scheme for image segmentation based on the level-set method. In this approach, the curve evolution is described as the 0-level set of a representation function but we modify the velocity that drives the curve to the boundary of the object in order to obtain a new velocity with additional properties that are extremely useful to develop a more stable high-order approximation with a small additional cost. The approximation scheme proposed here is the first 2D version of an adaptive "filtered" scheme recently introduced and analyzed by the authors in 1D. This approach is interesting since the implementation of the filtered scheme is rather efficient and easy. The scheme combines two building blocks (a monotone scheme and a high-order scheme) via a filter function and smoothness indicators that allow to detect the regularity of the approximate solution adapting the scheme in an automatic way. Some numerical tests on synthetic and real images confirm the accuracy of the proposed method and the advantages given by the new velocity.Comment: Accepted version for publication in SIAM Journal on Imaging Sciences, 86 figure

    An adaptive cracking particle method providing explicit and accurate description of 3D crack surfaces

    Get PDF
    Cracks in 3D have arbitrary shapes and therefore present difficulties for numerical modelling. A novel adaptive cracking particle method with explicit and accurate description of 3D cracks is described in this paper. In this meshless method, crack surfaces are described by a set of discontinuous segments which are associated with particles. This group of particles are assumed all to be “cracked” and split into two sub-particles with modified support domains. Compared to the original method where the spherical supports at particles are equally divided, the proposed method makes use of non-planar segments to account for changes in crack face direction. The orientations of those segments and the angular changes of cracks during crack propagation steps are recorded using triangular meshes. Supports of weight functions are modified according to those changes so that quasi-continuous crack surfaces can be obtained, avoiding the spurious cracking seen in earlier CPMs. An adaptive approach in 3D is then introduced to capture stress gradients around crack fronts. Several 3D crack problems with reference results have been tested to validate the proposed method with good agreement being achieved using the new method, showing it to be potentially a significant advance for 3D fracture predictions problems

    3-D local mesh refinement XFEM with variable-node hexahedron elements for extraction of stress intensity factors of straight and curved planar cracks

    Get PDF
    A novel local mesh refinement approach for failure analysis of three-dimensional (3-D) linear elastic solids is developed, considering both 3-D straight and curved planar cracks. The present local mesh refinement formulation is in terms of the extended finite element methods and variable-node hexahedron elements, driven by a posteriori error indicator. Our 3-D formulation using hexahedron elements rigorously embraces a posteriori error estimation scheme, a structural coupling scale-meshes strategy and an enrichment technique. Remeshing is only performed where it is needed, e.g., a vicinity of crack, through an error estimator based on the recovery stress procedure. To treat the mismatching problem induced by different scale-meshes in the domain, a structural coupling scheme employing variable-node transition hexahedron elements based on the generic point interpolation with an arbitrary number of nodes on each of their faces is presented. The 3-D finite element approximations of field variables are enhanced by enrichments so that the mesh is fully independent of the crack geometry. The displacement extrapolation method is taken for the evaluation of linear elastic fracture parameters (e.g., stress intensity factors - SIFs). To show the accuracy and performance of our 3-D proposed formulation, six numerical examples of planar 3-D straight and curved shaped cracks with single and mixed-mode fractures and different configurations are considered and analyzed. The SIFs computed by the developed method are validated with respect to analytical solutions and the ones derived from the conventional XFEM. Associated with an adaptive process, the present 3-D formulation allows the analysts to gain a desirable accuracy with a few trials, which is suited for practices purpose

    A statistical approach for fracture property realization and macroscopic failure analysis of brittle materials

    Get PDF
    Lacking the energy dissipative mechanics such as plastic deformation to rebalance localized stresses, similar to their ductile counterparts, brittle material fracture mechanics is associated with catastrophic failure of purely brittle and quasi-brittle materials at immeasurable and measurable deformation scales respectively. This failure, in the form macroscale sharp cracks, is highly dependent on the composition of the material microstructure. Further, the complexity of this relationship and the resulting crack patterns is exacerbated under highly dynamic loading conditions. A robust brittle material model must account for the multiscale inhomogeneity as well as the probabilistic distribution of the constituents which cause material heterogeneity and influence the complex mechanisms of dynamic fracture responses of the material. Continuum-based homogenization is carried out via finite element-based micromechanical analysis of a material neighbor which gives is geometrically described as a sampling windows (i.e., statistical volume elements). These volume elements are well-defined such that they are representative of the material while propagating material randomness from the inherent microscale defects. Homogenization yields spatially defined elastic and fracture related effective properties, utilized to statistically characterize the material in terms of these properties. This spatial characterization is made possible by performing homogenization at prescribed spatial locations which collectively comprise a non-uniform spatial grid which allows the mapping of each effective material properties to an associated spatial location. Through stochastic decomposition of the derived empirical covariance of the sampled effective material property, the Karhunen-Loeve method is used to generate realizations of a continuous and spatially-correlated random field approximation that preserve the statistics of the material from which it is derived. Aspects of modeling both isotropic and anisotropic brittle materials, from a statistical viewpoint, are investigated to determine how each influences the macroscale fracture response of these materials under highly dynamic conditions. The effects of modeling a material both explicitly by representations of discrete multiscale constituents and/or implicitly by continuum representation of material properties is studies to determine how each model influences the resulting material fracture response. For the implicit material representations, both a statistical white noise (i.e., Weibull-based spatially-uncorrelated) and colored noise (i.e., Karhunen-Loeve spatially-correlated model) random fields are employed herein
    • 

    corecore