18 research outputs found

    Adaptive Robot Systems in Highly Dynamic Environments: A Table Tennis Robot

    Get PDF
    Hintergrund: Tischtennis bietet ideale Bedingungen, um Kamera-basierte Roboterarme am Limit zu testen. Die besondere Herausforderung liegt in der hohen Geschwindigkeit des Spiels und in der großen Varianz von Spin und Tempo jedes einzelnen Schlages. Die bisherige Forschung mit Tischtennisrobotern beschränkt sich jedoch auf einfache Szenarien, d.h. auf langsame Bälle mit einer geringen Rotation. Forschungsziel: Es soll ein lernfähiger Tischtennisroboter entwickelt werden, der mit dem Spin menschlicher Gegner umgehen kann. Methoden: Das vorgestellte Robotersystem besteht aus sechs Komponenten: Ballpositionserkennung, Ballspinerkennung, Balltrajektorienvorhersage, Schlagparameterbestimmung, Robotertrajektorienplanung und Robotersteuerung. Zuerst wird der Ball mit traditioneller Bildverarbeitung in den Kamerabildern lokalisiert. Mit iterativer Triangulation wird dann seine 3D-Position berechnet. Aus der Kurve der Ballpositionen wird die aktuelle Position und Geschwindigkeit des Balles ermittelt. Für die Spinerkennung werden drei Methoden präsentiert: Die ersten beiden verfolgen die Bewegung des aufgedruckten Ball-Logos auf hochauflösenden Bildern durch Computer Vision bzw. Convolutional Neural Networks. Im dritten Ansatz wird die Flugbahn des Balls unter Berücksichtigung der Magnus-Kraft analysiert. Anhand der Position, der Geschwindigkeit und des Spins des Balls wird die zukünftige Flugbahn berechnet. Dafür wird die physikalische Diffenzialgleichung mit Gravitationskraft, Luftwiderstandskraft und Magnus-Kraft schrittweise gelöst. Mit dem berechneten Zustand des Balls am Schlagpunkt haben wir einen Reinforcement-Learning-Algorithmus trainiert, der bestimmt, mit welchen Schlagparametern der Ball zu treffen ist. Eine passende Robotertrajektorie wird von der Reflexxes-Bibliothek generiert. %Der Roboter wird dann mit einer Frequenz von 250 Hz angesteuert. Ergebnisse: In der quantitativen Auswertung erzielen die einzelnen Komponenten mindestens so gute Ergebnisse wie vergleichbare Tischtennisroboter. Im Hinblick auf das Forschungsziel konnte der Roboter - ein Konterspiel mit einem Menschen führen, mit bis zu 60 Rückschlägen, - unterschiedlichen Spin (Über- und Unterschnitt) retournieren - und mehrere Tischtennisübungen innerhalb von 200 Schlägen erlernen. Schlußfolgerung: Bedeutende algorithmische Neuerungen führen wir in der Spinerkennung und beim Reinforcement Learning von Schlagparametern ein. Dadurch meistert der Roboter anspruchsvollere Spin- und Übungsszenarien als in vergleichbaren Arbeiten.Background: Robotic table tennis systems offer an ideal platform for pushing camera-based robotic manipulation systems to the limit. The unique challenge arises from the fast-paced play and the wide variation in spin and speed between strokes. The range of scenarios under which existing table tennis robots are able to operate is, however, limited, requiring slow play with low rotational velocity of the ball (spin). Research Goal: We aim to develop a table tennis robot system with learning capabilities able to handle spin against a human opponent. Methods: The robot system presented in this thesis consists of six components: ball position detection, ball spin detection, ball trajectory prediction, stroke parameter suggestion, robot trajectory generation, and robot control. For ball detection, the camera images pass through a conventional image processing pipeline. The ball’s 3D positions are determined using iterative triangulation and these are then used to estimate the current ball state (position and velocity). We propose three methods for estimating the spin. The first two methods estimate spin by analyzing the movement of the logo printed on the ball on high-resolution images using either conventional computer vision or convolutional neural networks. The final approach involves analyzing the trajectory of the ball using Magnus force fitting. Once the ball’s position, velocity, and spin are known, the future trajectory is predicted by forward-solving a physical ball model involving gravitational, drag, and Magnus forces. With the predicted ball state at hitting time as state input, we train a reinforcement learning algorithm to suggest the racket state at hitting time (stroke parameter). We use the Reflexxes library to generate a robot trajectory to achieve the suggested racket state. Results: Quantitative evaluation showed that all system components achieve results as good as or better than comparable robots. Regarding the research goal of this thesis, the robot was able to - maintain stable counter-hitting rallies of up to 60 balls with a human player, - return balls with different spin types (topspin and backspin) in the same rally, - learn multiple table tennis drills in just 200 strokes or fewer. Conclusion: Our spin detection system and reinforcement learning-based stroke parameter suggestion introduce significant algorithmic novelties. In contrast to previous work, our robot succeeds in more difficult spin scenarios and drills

    Dynamic Bat-Control of a Redundant Ball Playing Robot

    Get PDF
    This thesis shows a control algorithm for coping with a ball batting task for an entertainment robot. The robot is a three jointed robot with a redundant degree of freedom and its name is Doggy . Doggy because of its dog-like costume. Design, mechanics and electronics were developed by us. DC-motors control the tooth belt driven joints, resulting in elasticities between the motor and link. Redundancy and elasticity have to be taken into account by our developed controller and are demanding control tasks. In this thesis we show the structure of the ball playing robot and how this structure can be described as a model. We distinguish two models: One model that includes a flexible bearing, the other does not. Both models are calibrated using the toolkit Sparse Least Squares on Manifolds (SLOM) - i.e. the parameters for the model are determined. Both calibrated models are compared to measurements of the real system. The model with the flexible bearing is used to implement a state estimator - based on a Kalman filter - on a microcontroller. This ensures real time estimation of the robot states. The estimated states are also compared with the measurements and are assessed. The estimated states represent the measurements well. In the core of this work we develop a Task Level Optimal Controller (TLOC), a model-predictive optimal controller based on the principles of a Linear Quadratic Regulator (LQR). We aim to play a ball back to an opponent precisely. We show how this task of playing a ball at a desired time with a desired velocity at a desired position can be embedded into the LQR principle. We use cost functions for the task description. In simulations, we show the functionality of the control concept, which consists of a linear part (on a microcontroller) and a nonlinear part (PC software). The linear part uses feedback gains which are calculated by the nonlinear part. The concept of the ball batting controller with precalculated feedback gains is evaluated on the robot. This shows successful batting motions. The entertainment aspect has been tested on the Open Campus Day at the University of Bremen and is summarized here shortly. Likewise, a jointly developed audience interaction by recognition of distinctive sounds is summarized herein. In this thesis we answer the question, if it is possible to define a rebound task for our robot within a controller and show the necessary steps for this

    An Optimal Trajectory Planner for a Robotic Batting Task: The Table Tennis Example

    Get PDF
    This paper presents an optimal trajectory planner for a robotic batting task . The specific case of a table tennis game performed by a robot is considered. Given an estimation of the trajectory of the ball during the free flight, the method addresses the determination of the paddle configuration (pose and velocity) to return the ball at a desired position with a desired spin. The implemented algorithm takes into account the hybrid dynamic model of the ball in free flight as well as the state transition at the impact (the reset map). An optimal trajectory that minimizes the acceleration functional is generated for the paddle to reach the desired impact position, velocity and orientation. Simulations of different case studies further bolster the approach along with a comparison with state-of-the-art methods

    Bringing a Humanoid Robot Closer to Human Versatility : Hard Realtime Software Architecture and Deep Learning Based Tactile Sensing

    Get PDF
    For centuries, it has been a vision of man to create humanoid robots, i.e., machines that not only resemble the shape of the human body, but have similar capabilities, especially in dextrously manipulating their environment. But only in recent years it has been possible to build actual humanoid robots with many degrees of freedom (DOF) and equipped with torque controlled joints, which are a prerequisite for sensitively acting in the world. In this thesis, we extend DLR's advanced mobile torque controlled humanoid robot Agile Justin into two important directions to get closer to human versatility. First, we enable Agile Justin, which was originally built as a research platform for dextrous mobile manipulation, to also be able to execute complex dynamic manipulation tasks. We demonstrate this with the challenging task of catching up to two simultaneously thrown balls with its hands. Second, we equip Agile Justin with highly developed and deep learning based tactile sensing capabilities that are critical for dextrous fine manipulation. We demonstrate its tactile capabilities with the delicate task of identifying an objects material simply by gently sweeping with a fingertip over its surface. Key for the realization of complex dynamic manipulation tasks is a software framework that allows for a component based system architecture to cope with the complexity and parallel and distributed computational demands of deep sensor-perception-planning-action loops -- but under tight timing constraints. This thesis presents the communication layer of our aRDx (agile robot development -- next generation) software framework that provides hard realtime determinism and optimal transport of data packets with zero-copy for intra- and inter-process and copy-once for distributed communication. In the implementation of the challenging ball catching application on Agile Justin, we take full advantage of aRDx's performance and advanced features like channel synchronization. Besides developing the challenging visual ball tracking using only onboard sensing while everything is moving and the automatic and self-contained calibration procedure to provide the necessary precision, the major contribution is the unified generation of the reaching motion for the arms. The catch point selection, motion planning and the joint interpolation steps are subsumed in one nonlinear constrained optimization problem which is solved in realtime and allows for the realization of different catch behaviors. For the highly sensitive task of tactile material classification with a flexible pressure-sensitive skin on Agile Justin's fingertip, we present our deep convolutional network architecture TactNet-II. The input is the raw 16000 dimensional complex and noisy spatio-temporal tactile signal generated when sweeping over an object's surface. For comparison, we perform a thorough human performance experiment with 15 subjects which shows that Agile Justin reaches superhuman performance in the high-level material classification task (What material id?), as well as in the low-level material differentiation task (Are two materials the same?). To increase the sample efficiency of TactNet-II, we adapt state of the art deep end-to-end transfer learning to tactile material classification leading to an up to 15 fold reduction in the number of training samples needed. The presented methods led to six publication awards and award finalists and international media coverage but also worked robustly at many trade fairs and lab demos

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Visual servoing of mobile robots using potential fields /

    Get PDF
    The popularity of autonomous mobile robots have been rapidly increasing due to their new emerging application areas, from room cleaning, tourist guidance to space explorations. However, the development of a satisfactory control algorithm that will enable the autonomous mobile robots to navigate safely especially in dynamic environments is still an open research problem. In this work, a newly proposed potential field based control method is implemented, analyzed, and improvements are suggested based on experimental results obtained from a real robot. The experimental system, planned to be the groundwork for robot soccer team, consists of an overhead global vision camera, personal computer, wireless module, and a non-holonomic mobile robot, which is supposed to navigate safely among obstacles and reach its goal point. Images of the robots operating area are acquired by the camera, color processed by the PC in real-time to retrieve the required position and orientation information of the robot, goal, and obstacles. Then, the control algorithm is applied, and resulting reference wheel velocities are sent to the robot via wireless link. Finally, robot has to drive with these reference velocities for safe navigation and goal tracking. Experimental results in the form of motion history images, graphs and movies are presented to demonstrate the successful as well as problematic aspects of the implemented algorithm and the setup

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Contribution au traitement d informations visuelles complexes et Ă  l extraction autonome des connaissances (application Ă  la robotique autonome)

    Get PDF
    Le travail effectué lors de cette thèse concerne le développement d'un système cognitif artificiel autonome. La solution proposée repose sur l'hypothèse que la curiosité est une source de motivation d'un système cognitif dans le processus d'acquisition des nouvelles connaissances. En outre, deux types distincts de curiosité ont été identifiés conformément au système cognitif humain. Sur ce principe, une architecture cognitive à deux niveaux a été proposée. Le bas-niveau repose sur le principe de la saillance perceptive, tandis que le haut-niveau réalise l'acquisition des connaissances par l'observation et l'interaction avec l'environnement. Cette thèse apporte les contributions suivantes : A) Un état de l'art sur l'acquisition autonome de connaissance. B) L'étude, la conception et la réalisation d'un système cognitif bas-niveau basé sur le principe de la curiosité perceptive. L'approche proposée repose sur la saillance visuelle réalisée grâce au développement d'un algorithme rapide et robuste permettant la détection et l'apprentissage d'objets saillants. C) La conception d'un système cognitif haut-niveau, basé sur une approche générique, permettant l'acquisition de connaissance à partir de l'observation et de l'interaction avec son environnent (y compris avec les êtres humains). Basé sur la curiosité épistémique, le système cognitif haut-niveau développé permet à une machine (par exemple un robot) de devenir l'acteur de son propre apprentissage. Une conséquence substantielle d'un tel système est la possibilité de conférer des capacités cognitives haut-niveau multimodales à des robots pour accroître leur autonomie dans un environnement réel (environnement humain). D) La mise en œuvre de la stratégie proposée dans le cadre de la robotique autonome. Les études et les validations expérimentales réalisées ont notamment confirmé que notre approche permet d'accroître l'autonomie des robots dans un environnement réelThe work accomplished in this thesis concerns development of an autonomous machine cognition system. The proposed solution reposes on the assumption that it is the curiosity which motivates a cognitive system to acquire new knowledge. Further, two distinct kinds of curiosity are identified in conformity to human cognitive system. On this I build a two level cognitive architecture. I identify its lower level with the perceptual saliency mechanism, while the higher level performs knowledge acquisition from observation and interaction with the environment. This thesis brings the following contribution: A) Investigation of the state of the art in autonomous knowledge acquisition. B) Realization of a lower cognitive level in the ensemble of the mentioned system, which is realizing the perceptual curiosity mechanism through a novel fast, real-world robust algorithm for salient object detection and learning. C) Realization of a higher cognitive level through a general framework for knowledge acquisition from observation and interaction with the environment including humans. Based on the epistemic curiosity, the high-level cognitive system enables a machine (e.g. a robot) to be itself the actor of its learning. An important consequence of this system is the possibility to confer high level multimodal cognitive capabilities to robots to increase their autonomy in real-world environment (human environment). D) Realization of the strategy proposed in the context of autonomous robotics. The studies and experimental validations done had confirmed notably that our approach allows increasing the autonomy of robots in real-world environmentPARIS-EST-Université (770839901) / SudocSudocFranceF

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Robot Games for Elderly:A Case-Based Approach

    Get PDF
    corecore