1,366 research outputs found

    Deep learning in population genetics

    Get PDF
    KK is supported by a grant from the Deutsche Forschungsgemeinschaft (DFG) through the TUM International Graduate School of Science and Engineering (IGSSE), GSC 81, within the project GENOMIE QADOP. We acknowledge the support of Imperial College London - TUM Partnership award.Population genetics is transitioning into a data-driven discipline thanks to the availability of large-scale genomic data and the need to study increasingly complex evolutionary scenarios. With likelihood and Bayesian approaches becoming either intractable or computationally unfeasible, machine learning, and in particular deep learning, algorithms are emerging as popular techniques for population genetic inferences. These approaches rely on algorithms that learn non-linear relationships between the input data and the model parameters being estimated through representation learning from training data sets. Deep learning algorithms currently employed in the field comprise discriminative and generative models with fully connected, con volutional, or recurrent layers. Additionally, a wide range of powerful simulators to generate training data under complex scenarios are now available. The application of deep learning to empirical data sets mostly replicates previous findings of demography reconstruction and signals of natural selection in model organisms. To showcase the feasibility of deep learning to tackle new challenges, we designed a branched architecture to detect signals of recent balancing selection from temporal haplotypic data, which exhibited good predictive performance on simulated data. Investigations on the interpretability of neural networks, their robustness to uncertain training data, and creative representation of population genetic data, will provide further opportunities for technological advancements in the field.Publisher PDFPeer reviewe

    Introducing deep learning -based methods into the variant calling analysis pipeline

    Get PDF
    Biological interpretation of the genetic variation enhances our understanding of normal and pathological phenotypes, and may lead to the development of new therapeutics. However, it is heavily dependent on the genomic data analysis, which might be inaccurate due to the various sequencing errors and inconsistencies caused by these errors. Modern analysis pipelines already utilize heuristic and statistical techniques, but the rate of falsely identified mutations remains high and variable, particular sequencing technology, settings and variant type. Recently, several tools based on deep neural networks have been published. The neural networks are supposed to find motifs in the data that were not previously seen. The performance of these novel tools is assessed in terms of precision and recall, as well as computational efficiency. Following the established best practices in both variant detection and benchmarking, the discussed tools demonstrate accuracy metrics and computational efficiency that spur further discussion

    Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires

    Full text link
    The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity in order to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic and (iv) machine learning methods applied to dissect, quantify and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology towards coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.Comment: 27 pages, 2 figure

    Algorithms for Computational Genetics Epidemiology

    Get PDF
    The most intriguing problems in genetics epidemiology are to predict genetic disease susceptibility and to associate single nucleotide polymorphisms (SNPs) with diseases. In such these studies, it is necessary to resolve the ambiguities in genetic data. The primary obstacle for ambiguity resolution is that the physical methods for separating two haplotypes from an individual genotype (phasing) are too expensive. Although computational haplotype inference is a well-explored problem, high error rates continue to deteriorate association accuracy. Secondly, it is essential to use a small subset of informative SNPs (tag SNPs) accurately representing the rest of the SNPs (tagging). Tagging can achieve budget savings by genotyping only a limited number of SNPs and computationally inferring all other SNPs. Recent successes in high throughput genotyping technologies drastically increase the length of available SNP sequences. This elevates importance of informative SNP selection for compaction of huge genetic data in order to make feasible fine genotype analysis. Finally, even if complete and accurate data is available, it is unclear if common statistical methods can determine the susceptibility of complex diseases. The dissertation explores above computational problems with a variety of methods, including linear algebra, graph theory, linear programming, and greedy methods. The contributions include (1)significant speed-up of popular phasing tools without compromising their quality, (2)stat-of-the-art tagging tools applied to disease association, and (3)graph-based method for disease tagging and predicting disease susceptibility

    Deep Learning for Population Genetic Inference

    Get PDF
    Given genomic variation data from multiple individuals, computing the likelihood of complex population genetic models is often infeasible. To circumvent this problem, we introduce a novel likelihood-free inference framework by applying deep learning, a powerful modern technique in machine learning. Deep learning makes use of multilayer neural networks to learn a feature-based function from the input (e.g., hundreds of correlated summary statis- tics of data) to the output (e.g., population genetic parameters of interest). We demonstrate that deep learning can be effectively employed for population genetic inference and learning informative features of data. As a concrete application, we focus on the challenging problem of jointly inferring natural selection and demography (in the form of a population size change history). Our method is able to separate the global nature of demography from the local nature of selection, without sequential steps for these two factors. Studying demography and selection jointly is motivated by Drosophila, where pervasive selection confounds demographic analysis. We apply our method to 197 African Drosophila melanogaster genomes from Zambia to infer both their overall demography, and regions of their genome under selection. We find many regions of the genome that have experienced hard sweeps, and fewer under selection on standing variation (soft sweep) or balancing selection. Inter- estingly, we find that soft sweeps and balancing selection occur more frequently closer to the centromere of each chromosome. In addition, our demographic inference suggests that previously estimated bottlenecks for African Drosophila melanogaster are too extreme

    A Review of Integrative Imputation for Multi-Omics Datasets

    Get PDF
    Multi-omics studies, which explore the interactions between multiple types of biological factors, have significant advantages over single-omics analysis for their ability to provide a more holistic view of biological processes, uncover the causal and functional mechanisms for complex diseases, and facilitate new discoveries in precision medicine. However, omics datasets often contain missing values, and in multi-omics study designs it is common for individuals to be represented for some omics layers but not all. Since most statistical analyses cannot be applied directly to the incomplete datasets, imputation is typically performed to infer the missing values. Integrative imputation techniques which make use of the correlations and shared information among multi-omics datasets are expected to outperform approaches that rely on single-omics information alone, resulting in more accurate results for the subsequent downstream analyses. In this review, we provide an overview of the currently available imputation methods for handling missing values in bioinformatics data with an emphasis on multi-omics imputation. In addition, we also provide a perspective on how deep learning methods might be developed for the integrative imputation of multi-omics datasets

    Genotype/Haplotype Tagging Methods and their Validation

    Get PDF
    This study focuses how the MLR-tagging for statistical covering, i.e. either maximizing average R2 for certain number of requested tags or minimizing number of tags such that for any non-tag SNP there exists a highly correlated (squared correlation R2 \u3e 0.8) tag SNP. We compare with tagger, a software for selecting tags in hapMap project. MLR-tagging needs less number of tags than tagger in all 6 cases of the given test sets except 2. Meanwhile, Biologists can detect or collect data only from a small set. So, this will bring a problem for scientists that the estimates accuracy of tag SNPs when constructing the complete human haplotype map. This study investigates how the MLR-tagging for statistically coverage performs under unbias study. The experiment results shows MLR-tagging still select small amount of SNPs very well even without observing the entire SNP in the sample
    corecore