325 research outputs found

    Protein-DNA binding sites prediction based on pre-trained protein language model and contrastive learning

    Full text link
    Protein-DNA interaction is critical for life activities such as replication, transcription, and splicing. Identifying protein-DNA binding residues is essential for modeling their interaction and downstream studies. However, developing accurate and efficient computational methods for this task remains challenging. Improvements in this area have the potential to drive novel applications in biotechnology and drug design. In this study, we propose a novel approach called CLAPE, which combines a pre-trained protein language model and the contrastive learning method to predict DNA binding residues. We trained the CLAPE-DB model on the protein-DNA binding sites dataset and evaluated the model performance and generalization ability through various experiments. The results showed that the AUC values of the CLAPE-DB model on the two benchmark datasets reached 0.871 and 0.881, respectively, indicating superior performance compared to other existing models. CLAPE-DB showed better generalization ability and was specific to DNA-binding sites. In addition, we trained CLAPE on different protein-ligand binding sites datasets, demonstrating that CLAPE is a general framework for binding sites prediction. To facilitate the scientific community, the benchmark datasets and codes are freely available at https://github.com/YAndrewL/clape

    Efficacy of different protein descriptors in predicting protein functional families

    Get PDF
    10.1186/1471-2105-8-300BMC Bioinformatics8-BBMI

    Identifying DNA-binding proteins by combining support vector machine and PSSM distance transformation

    Get PDF
    Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/

    Hot spot prediction in protein-protein interactions by an ensemble system

    Full text link
    © 2018 The Author(s). Background: Hot spot residues are functional sites in protein interaction interfaces. The identification of hot spot residues is time-consuming and laborious using experimental methods. In order to address the issue, many computational methods have been developed to predict hot spot residues. Moreover, most prediction methods are based on structural features, sequence characteristics, and/or other protein features. Results: This paper proposed an ensemble learning method to predict hot spot residues that only uses sequence features and the relative accessible surface area of amino acid sequences. In this work, a novel feature selection technique was developed, an auto-correlation function combined with a sliding window technique was applied to obtain the characteristics of amino acid residues in protein sequence, and an ensemble classifier with SVM and KNN base classifiers was built to achieve the best classification performance. Conclusion: The experimental results showed that our model yields the highest F1 score of 0.92 and an MCC value of 0.87 on ASEdb dataset. Compared with other machine learning methods, our model achieves a big improvement in hot spot prediction. Availability:http://deeplearner.ahu.edu.cn/web/HotspotEL.htm

    PDNAsite:identification of DNA-binding site from protein sequence by incorporating spatial and sequence context

    Get PDF
    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community

    The Trypanosoma brucei MitoCarta and its regulation and splicing pattern during development

    Get PDF
    It has long been known that trypanosomes regulate mitochondrial biogenesis during the life cycle of the parasite; however, the mitochondrial protein inventory (MitoCarta) and its regulation remain unknown. We present a novel computational method for genome-wide prediction of mitochondrial proteins using a support vector machine-based classifier with ∼90% prediction accuracy. Using this method, we predicted the mitochondrial localization of 468 proteins with high confidence and have experimentally verified the localization of a subset of these proteins. We then applied a recently developed parallel sequencing technology to determine the expression profiles and the splicing patterns of a total of 1065 predicted MitoCarta transcripts during the development of the parasite, and showed that 435 of the transcripts significantly changed their expressions while 630 remain unchanged in any of the three life stages analyzed. Furthermore, we identified 298 alternatively splicing events, a small subset of which could lead to dual localization of the corresponding proteins

    Improving the resolution of interaction maps: A middleground between high-resolution complexes and genome-wide interactomes

    Get PDF
    Protein-protein interactions are ubiquitous in Biology and therefore central to understand living organisms. In recent years, large-scale studies have been undertaken to describe, at least partially, protein-protein interaction maps or interactomes for a number of relevant organisms including human. Although the analysis of interaction networks is proving useful, current interactomes provide a blurry and granular picture of the molecular machinery, i.e. unless the structure of the protein complex is known the molecular details of the interaction are missing and sometime is even not possible to know if the interaction between the proteins is direct, i.e. physical interaction or part of functional, not necessary, direct association. Unfortunately, the determination of the structure of protein complexes cannot keep pace with the discovery of new protein-protein interactions resulting in a large, and increasing, gap between the number of complexes that are thought to exist and the number for which 3D structures are available. The aim of the thesis was to tackle this problem by implementing computational approaches to derive structural models of protein complexes and thus reduce this existing gap. Over the course of the thesis, a novel modelling algorithm to predict the structure of protein complexes, V-D2OCK, was implemented. This new algorithm combines structure-based prediction of protein binding sites by means of a novel algorithm developed over the course of the thesis: VORFFIP and M-VORFFIP, data-driven docking and energy minimization. This algorithm was used to improve the coverage and structural content of the human interactome compiled from different sources of interactomic data to ensure the most comprehensive interactome. Finally, the human interactome and structural models were compiled in a database, V-D2OCK DB, that offers an easy and user-friendly access to the human interactome including a bespoken graphical molecular viewer to facilitate the analysis of the structural models of protein complexes. Furthermore, new organisms, in addition to human, were included providing a useful resource for the study of all known interactomes
    corecore