433 research outputs found

    An adaptive admission control and load balancing algorithm for a QoS-aware Web system

    Get PDF
    The main objective of this thesis focuses on the design of an adaptive algorithm for admission control and content-aware load balancing for Web traffic. In order to set the context of this work, several reviews are included to introduce the reader in the background concepts of Web load balancing, admission control and the Internet traffic characteristics that may affect the good performance of a Web site. The admission control and load balancing algorithm described in this thesis manages the distribution of traffic to a Web cluster based on QoS requirements. The goal of the proposed scheduling algorithm is to avoid situations in which the system provides a lower performance than desired due to servers' congestion. This is achieved through the implementation of forecasting calculations. Obviously, the increase of the computational cost of the algorithm results in some overhead. This is the reason for designing an adaptive time slot scheduling that sets the execution times of the algorithm depending on the burstiness that is arriving to the system. Therefore, the predictive scheduling algorithm proposed includes an adaptive overhead control. Once defined the scheduling of the algorithm, we design the admission control module based on throughput predictions. The results obtained by several throughput predictors are compared and one of them is selected to be included in our algorithm. The utilisation level that the Web servers will have in the near future is also forecasted and reserved for each service depending on the Service Level Agreement (SLA). Our load balancing strategy is based on a classical policy. Hence, a comparison of several classical load balancing policies is also included in order to know which of them better fits our algorithm. A simulation model has been designed to obtain the results presented in this thesis

    Information fusion architectures for security and resource management in cyber physical systems

    Get PDF
    Data acquisition through sensors is very crucial in determining the operability of the observed physical entity. Cyber Physical Systems (CPSs) are an example of distributed systems where sensors embedded into the physical system are used in sensing and data acquisition. CPSs are a collaboration between the physical and the computational cyber components. The control decisions sent back to the actuators on the physical components from the computational cyber components closes the feedback loop of the CPS. Since, this feedback is solely based on the data collected through the embedded sensors, information acquisition from the data plays an extremely vital role in determining the operational stability of the CPS. Data collection process may be hindered by disturbances such as system faults, noise and security attacks. Hence, simple data acquisition techniques will not suffice as accurate system representation cannot be obtained. Therefore, more powerful methods of inferring information from collected data such as Information Fusion have to be used. Information fusion is analogous to the cognitive process used by humans to integrate data continuously from their senses to make inferences about their environment. Data from the sensors is combined using techniques drawn from several disciplines such as Adaptive Filtering, Machine Learning and Pattern Recognition. Decisions made from such combination of data form the crux of information fusion and differentiates it from a flat structured data aggregation. In this dissertation, multi-layered information fusion models are used to develop automated decision making architectures to service security and resource management requirements in Cyber Physical Systems --Abstract, page iv

    AWAIT: Efficient Overload Management for Busy Multi-tier Web Services under Bursty Workloads

    Get PDF
    The problem of service differentiation and admission control in web services that utilize a multi-tier architecture is more challenging than in a single-tiered one, especially in the presence of bursty conditions, i.e., when arrivals of user web sessions to the system are characterized by temporal surges in their arrival intensities and demands. We demonstrate that classic techniques for a session based admission control that are triggered by threshold violations are ineffective under bursty workload conditions, as user-perceived performance metrics rapidly and dramatically deteriorate, inadvertently leading the system to reject requests from already accepted user sessions, resulting in business loss. Here, as a solution for service differentiation of accepted user sessions we promote a methodology that is based on blocking, i.e., when the system operates in overload, requests from accepted sessions are not rejected but are instead stored in a blocking queue that effectively acts as a waiting room. The requests in the blocking queue implicitly become of higher priority and are served immediately after load subsides. Residence in the blocking queue comes with a performance cost as blocking time adds to the perceived end-to-end user response time. We present a novel autonomic session based admission control policy, called AWAIT, that adaptively adjusts the capacity of the blocking queue as a function of workload burstiness in order to meet predefined user service level objectives while keeping the portion of aborted accepted sessions to a minimum. Detailed simulations illustrate the effectiveness of AWAIT under different workload burstiness profiles and therefore strongly argue for its effectiveness

    Extra Functional Properties Evaluation of Self-managed Software Systems with Formal Methods

    Get PDF
    Multitud de aplicaciones software actuales están abocadas a operar en contextos dinámicos. Estos pueden manifestarse en términos de cambios en el entorno de ejecución de la aplicación, cambios en los requisitos de la aplicación, cambios en la carga de trabajo recibida por la aplicación, o cambios en cualquiera de los elementos que la aplicación software pueda percibir y verse afectada. Además, estos contextos dinámicos no están restringidos a un dominio particular de aplicaciones sino que se pueden encontrar en múltiples dominios, tales como: sistemas empotrados, arquitecturas orientadas a servicios, clusters para computación de altas prestaciones, dispositivos móviles o software para el funcionamiento de la red. La existencia de estas características disuade a los ingenieros de desarrollar software que no sea capaz de cambiar de modo alguno su ejecución para acomodarla al contexto en el que se está ejecutando el software en cada momento. Por lo tanto, con el objetivo de que el software pueda satisfacer sus requisitos en todo momento, este debe incluir mecanismos para poder cambiar su configuración de ejecución. Además, debido a que los cambios de contexto son frecuentes y afectan a múltiples dispositivos de la aplicación, la intervención humana que cambie manualmente la configuración del software no es una solución factible. Para enfrentarse a estos desafíos, la comunidad de Ingeniería del Software ha propuesto nuevos paradigmas que posibilitan el desarrollo de software que se enfrenta a contextos cambiantes de un modo automático; por ejemplo las propuestas Autonomic Computing y Self-* Software. En tales propuestas es el propio software quien gestiona sus mecanismos para cambiar la configuración de ejecución, sin requerir por lo tanto intervención humana alguna. Un aspecto esencial del software auto-adaptativo (Self-adaptive Software es uno de los términos más generales para referirse a Self-* Software) es el de planear sus cambios o adaptaciones. Los planes de adaptación determinan tanto el modo en el que se adaptará el software como los momentos oportunos para ejecutar tales adaptaciones. Hay un gran conjunto de situaciones para las cuales la propiedad de auto- adaptación es una solución. Una de esas situaciones es la de mantener al sistema satisfaciendo sus requisitos extra funcionales, tales como la calidad de servicio (Quality of Service, QoS) y su consumo de energía. Esta tesis ha investigado esa situación mediante el uso de métodos formales. Una de las contribuciones de esta tesis es la propuesta para asentar en una arquitectura software los sistemas que son auto-adaptativos respecto a su QoS y su consumo de energía. Con este objetivo, esta parte de la investigación la guía una arquitectura de tres capas de referencia para sistemas auto-adaptativos. La bondad del uso de una arquitectura de referencia es que muestra fácilmente los nuevos desafíos en el diseño de este tipo de sistemas. Naturalmente, la planificación de la adaptación es una de las actividades consideradas en la arquitectura. Otra de las contribuciones de la tesis es la propuesta de métodos para la creación de planes de adaptación. Los métodos formales juegan un rol esencial en esta actividad, ya que posibilitan el estudio de las propiedades extra funcionales de los sistemas en diferentes configuraciones. El método formal utilizado para estos análisis es el de las redes de Petri markovianas. Una vez que se ha creado el plan de adaptación, hemos investigado la utilización de los métodos formales para la evaluación de QoS y consumo de energía de los sistemas auto-adaptativos. Por lo tanto, se ha contribuido a la comunidad de análisis de QoS con el análisis de un nuevo y particularmente complejo tipo de sistemas software. Para llevar a cabo este análisis se requiere el modelado de los cambios din·micos del contexto de ejecución, para lo que se han utilizado una variedad de métodos formales, como los Markov modulated Poisson processes para estimar los parámetros de las variaciones en la carga de trabajo recibida por la aplicación, o los hidden Markov models para predecir el estado del entorno de ejecución. Estos modelos han sido usados junto a las redes de Petri para evaluar sistemas auto-adaptativos y obtener resultados sobre su QoS y consumo de energía. El trabajo de investigación anterior sacó a la luz el hecho de que la adaptabilidad de un sistema no es una propiedad tan fácilmente cuantificable como las propiedades de QoS -por ejemplo, el tiempo de respuesta- o el consumo de energÌa. En consecuencia, se ha investigado en esa dirección y, como resultado, otra de las contribuciones de esta tesis es la propuesta de un conjunto de métricas para la cuantificación de la propiedad de adaptabilidad de sistemas basados en servicios. Para conseguir las anteriores contribuciones se realiza un uso intensivo de modelos y transformaciones de modelos; tarea para la que se han seguido las mejores prácticas en el campo de investigación de la Ingeniería orientada a modelos (Model-driven Engineering, MDE). El trabajo de investigación de esta tesis en el campo MDE ha contribuido con: el aumento de la potencia de modelado de un lenguaje de modelado de software propuesto anteriormente y métodos de transformación desde dos lenguajes de modelado de software a redes de Petri estocasticas

    Traffic and task allocation in networks and the cloud

    Get PDF
    Communication services such as telephony, broadband and TV are increasingly migrating into Internet Protocol(IP) based networks because of the consolidation of telephone and data networks. Meanwhile, the increasingly wide application of Cloud Computing enables the accommodation of tens of thousands of applications from the general public or enterprise users which make use of Cloud services on-demand through IP networks such as the Internet. Real-Time services over IP (RTIP) have also been increasingly significant due to the convergence of network services, and the real-time needs of the Internet of Things (IoT) will strengthen this trend. Such Real-Time applications have strict Quality of Service (QoS) constraints, posing a major challenge for IP networks. The Cognitive Packet Network (CPN) has been designed as a QoS-driven protocol that addresses user-oriented QoS demands by adaptively routing packets based on online sensing and measurement. Thus in this thesis we first describe our design for a novel ``Real-Time (RT) traffic over CPN'' protocol which uses QoS goals that match the needs of voice packet delivery in the presence of other background traffic under varied traffic conditions; we present its experimental evaluation via measurements of key QoS metrics such as packet delay, delay variation (jitter) and packet loss ratio. Pursuing our investigation of packet routing in the Internet, we then propose a novel Big Data and Machine Learning approach for real-time Internet scale Route Optimisation based on Quality-of-Service using an overlay network, and evaluate is performance. Based on the collection of data sampled each 22 minutes over a large number of source-destinations pairs, we observe that intercontinental Internet Protocol (IP) paths are far from optimal with respect to metrics such as end-to-end round-trip delay. On the other hand, our machine learning based overlay network routing scheme exploits large scale data collected from communicating node pairs to select overlay paths, while it uses IP between neighbouring overlay nodes. We report measurements over a week long experiment with several million data points shows substantially better end-to-end QoS than is observed with pure IP routing. Pursuing the machine learning approach, we then address the challenging problem of dispatching incoming tasks to servers in Cloud systems so as to offer the best QoS and reliable job execution; an experimental system (the Task Allocation Platform) that we have developed is presented and used to compare several task allocation schemes, including a model driven algorithm, a reinforcement learning based scheme, and a ``sensible’’ allocation algorithm that assigns tasks to sub-systems that are observed to provide lower response time. These schemes are compared via measurements both among themselves and against a standard round-robin scheduler, with two architectures (with homogenous and heterogenous hosts having different processing capacities) and the conditions under which the different schemes offer better QoS are discussed. Since Cloud systems include both locally based servers at user premises and remote servers and multiple Clouds that can be reached over the Internet, we also describe a smart distributed system that combines local and remote Cloud facilities, allocating tasks dynamically to the service that offers the best overall QoS, and it includes a routing overlay which minimizes network delay for data transfer between Clouds. Internet-scale experiments that we report exhibit the effectiveness of our approach in adaptively distributing workload across multiple Clouds.Open Acces

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Effective Resource and Workload Management in Data Centers

    Get PDF
    The increasing demand for storage, computation, and business continuity has driven the growth of data centers. Managing data centers efficiently is a difficult task because of the wide variety of datacenter applications, their ever-changing intensities, and the fact that application performance targets may differ widely. Server virtualization has been a game-changing technology for IT, providing the possibility to support multiple virtual machines (VMs) simultaneously. This dissertation focuses on how virtualization technologies can be utilized to develop new tools for maintaining high resource utilization, for achieving high application performance, and for reducing the cost of data center management.;For multi-tiered applications, bursty workload traffic can significantly deteriorate performance. This dissertation proposes an admission control algorithm AWAIT, for handling overloading conditions in multi-tier web services. AWAIT places on hold requests of accepted sessions and refuses to admit new sessions when the system is in a sudden workload surge. to meet the service-level objective, AWAIT serves the requests in the blocking queue with high priority. The size of the queue is dynamically determined according to the workload burstiness.;Many admission control policies are triggered by instantaneous measurements of system resource usage, e.g., CPU utilization. This dissertation first demonstrates that directly measuring virtual machine resource utilizations with standard tools cannot always lead to accurate estimates. A directed factor graph (DFG) model is defined to model the dependencies among multiple types of resources across physical and virtual layers.;Virtualized data centers always enable sharing of resources among hosted applications for achieving high resource utilization. However, it is difficult to satisfy application SLOs on a shared infrastructure, as application workloads patterns change over time. AppRM, an automated management system not only allocates right amount of resources to applications for their performance target but also adjusts to dynamic workloads using an adaptive model.;Server consolidation is one of the key applications of server virtualization. This dissertation proposes a VM consolidation mechanism, first by extending the fair load balancing scheme for multi-dimensional vector scheduling, and then by using a queueing network model to capture the service contentions for a particular virtual machine placement

    MR-BART: Multi-Rate Available Bandwidth Estimation in Real-Time

    Full text link
    In this paper, we propose Multi-Rate Bandwidth Available in Real Time (MR-BART) to estimate the end-to-end Available Bandwidth (AB) of a network path. The proposed scheme is an extension of the Bandwidth Available in Real Time (BART) which employs multi-rate (MR) probe packet sequences with Kalman filtering. Comparing to BART, we show that the proposed method is more robust and converges faster than that of BART and achieves a more AB accurate estimation. Furthermore, we analyze the estimation error in MR-BART and obtain analytical formula and empirical expression for the AB estimation error based on the system parameters.Comment: 12 Pages (Two columns), 14 Figures, 4 Tables

    Resource Management Algorithms for Computing Hardware Design and Operations: From Circuits to Systems

    Get PDF
    The complexity of computation hardware has increased at an unprecedented rate for the last few decades. On the computer chip level, we have entered the era of multi/many-core processors made of billions of transistors. With transistor budget of this scale, many functions are integrated into a single chip. As such, chips today consist of many heterogeneous cores with intensive interaction among these cores. On the circuit level, with the end of Dennard scaling, continuously shrinking process technology has imposed a grand challenge on power density. The variation of circuit further exacerbated the problem by consuming a substantial time margin. On the system level, the rise of Warehouse Scale Computers and Data Centers have put resource management into new perspective. The ability of dynamically provision computation resource in these gigantic systems is crucial to their performance. In this thesis, three different resource management algorithms are discussed. The first algorithm assigns adaptivity resource to circuit blocks with a constraint on the overhead. The adaptivity improves resilience of the circuit to variation in a cost-effective way. The second algorithm manages the link bandwidth resource in application specific Networks-on-Chip. Quality-of-Service is guaranteed for time-critical traffic in the algorithm with an emphasis on power. The third algorithm manages the computation resource of the data center with precaution on the ill states of the system. Q-learning is employed to meet the dynamic nature of the system and Linear Temporal Logic is leveraged as a tool to describe temporal constraints. All three algorithms are evaluated by various experiments. The experimental results are compared to several previous work and show the advantage of our methods
    • …
    corecore