1,276 research outputs found

    Learning Spatial-Aware Regressions for Visual Tracking

    Full text link
    In this paper, we analyze the spatial information of deep features, and propose two complementary regressions for robust visual tracking. First, we propose a kernelized ridge regression model wherein the kernel value is defined as the weighted sum of similarity scores of all pairs of patches between two samples. We show that this model can be formulated as a neural network and thus can be efficiently solved. Second, we propose a fully convolutional neural network with spatially regularized kernels, through which the filter kernel corresponding to each output channel is forced to focus on a specific region of the target. Distance transform pooling is further exploited to determine the effectiveness of each output channel of the convolution layer. The outputs from the kernelized ridge regression model and the fully convolutional neural network are combined to obtain the ultimate response. Experimental results on two benchmark datasets validate the effectiveness of the proposed method.Comment: To appear in CVPR201

    EACOFT: an energy-aware correlation filter for visual tracking.

    Get PDF
    Correlation filter based trackers attribute to its calculation in the frequency domain can efficiently locate targets in a relatively fast speed. This characteristic however also limits its generalization in some specific scenarios. The reasons that they still fail to achieve superior performance to state-of-the-art (SOTA) trackers are possibly due to two main aspects. The first is that while tracking the objects whose energy is lower than the background, the tracker may occur drift or even lose the target. The second is that the biased samples may be inevitably selected for model training, which can easily lead to inaccurate tracking. To tackle these shortcomings, a novel energy-aware correlation filter (EACOFT) based tracking method is proposed, in our approach the energy between the foreground and the background is adaptively balanced, which enables the target of interest always having a higher energy than its background. The samples’ qualities are also evaluated in real time, which ensures that the samples used for template training are always helpful with tracking. In addition, we also propose an optimal bottom-up and top-down combined strategy for template training, which plays an important role in improving both the effectiveness and robustness of tracking. As a result, our approach achieves a great improvement on the basis of the baseline tracker, especially under the background clutter and fast motion challenges. Extensive experiments over multiple tracking benchmarks demonstrate the superior performance of our proposed methodology in comparison to a number of the SOTA trackers
    • …
    corecore