24,867 research outputs found

    Efficient Bayesian inference for harmonic models via adaptive posterior factorization

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Neurocomputing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in NEUROCOMPUTING, [VOL72, ISSUE 1-3, (2008)] DOI10.1016/j.neucom.2007.12.05

    Influence of binary mask estimation errors on robust speaker identification

    Get PDF
    Missing-data strategies have been developed to improve the noise-robustness of automatic speech recognition systems in adverse acoustic conditions. This is achieved by classifying time-frequency (T-F) units into reliable and unreliable components, as indicated by a so-called binary mask. Different approaches have been proposed to handle unreliable feature components, each with distinct advantages. The direct masking (DM) approach attenuates unreliable T-F units in the spectral domain, which allows the extraction of conventionally used mel-frequency cepstral coefficients (MFCCs). Instead of attenuating unreliable components in the feature extraction front-end, full marginalization (FM) discards unreliable feature components in the classification back-end. Finally, bounded marginalization (BM) can be used to combine the evidence from both reliable and unreliable feature components during classification. Since each of these approaches utilizes the knowledge about reliable and unreliable feature components in a different way, they will respond differently to estimation errors in the binary mask. The goal of this study was to identify the most effective strategy to exploit knowledge about reliable and unreliable feature components in the context of automatic speaker identification (SID). A systematic evaluation under ideal and non-ideal conditions demonstrated that the robustness to errors in the binary mask varied substantially across the different missing-data strategies. Moreover, full and bounded marginalization showed complementary performances in stationary and non-stationary background noises and were subsequently combined using a simple score fusion. This approach consistently outperformed individual SID systems in all considered experimental conditions

    Multi-candidate missing data imputation for robust speech recognition

    Get PDF
    The application of Missing Data Techniques (MDT) to increase the noise robustness of HMM/GMM-based large vocabulary speech recognizers is hampered by a large computational burden. The likelihood evaluations imply solving many constrained least squares (CLSQ) optimization problems. As an alternative, researchers have proposed frontend MDT or have made oversimplifying independence assumptions for the backend acoustic model. In this article, we propose a fast Multi-Candidate (MC) approach that solves the per-Gaussian CLSQ problems approximately by selecting the best from a small set of candidate solutions, which are generated as the MDT solutions on a reduced set of cluster Gaussians. Experiments show that the MC MDT runs equally fast as the uncompensated recognizer while achieving the accuracy of the full backend optimization approach. The experiments also show that exploiting the more accurate acoustic model of the backend does pay off in terms of accuracy when compared to frontend MDT. © 2012 Wang and Van hamme; licensee Springer.Wang Y., Van hamme H., ''Multi-candidate missing data imputation for robust speech recognition'', EURASIP journal on audio, speech, and music processing, vol. 17, 20 pp., 2012.status: publishe
    • …
    corecore