84 research outputs found

    Proof-of-concept of a single-point Time-of-Flight LiDAR system and guidelines towards integrated high-accuracy timing, advanced polarization sensing and scanning with a MEMS micromirror

    Get PDF
    Dissertação de mestrado integrado em Engenharia Física (área de especialização em Dispositivos, Microssistemas e Nanotecnologias)The core focus of the work reported herein is the fulfillment of a functional Light Detection and Ranging (LiDAR) sensor to validate the direct Time-of-Flight (ToF) ranging concept and the acquisition of critical knowledge regarding pivotal aspects jeopardizing the sensor’s performance, for forthcoming improvements aiming a realistic sensor targeted towards automotive applications. Hereupon, the ToF LiDAR system is implemented through an architecture encompassing both optical and electronical functions and is subsequently characterized under a sequence of test procedures usually applied in benchmarking of LiDAR sensors. The design employs a hybrid edge-emitting laser diode (pulsed at 6kHz, 46ns temporal FWHM, 7ns rise-time; 919nm wavelength with 5nm FWHM), a PIN photodiode to detect the back-reflected radiation, a transamplification stage and two Time-to-Digital Converters (TDCs), with leading-edge discrimination electronics to mark the transit time between emission and detection events. Furthermore, a flexible modular design is adopted using two separate Printed Circuit Boards (PCBs), comprising the transmitter (TX) and the receiver (RX), i.e. detection and signal processing. The overall output beam divergence is 0.4º×1º and an optical peak power of 60W (87% overall throughput) is realized. The sensor is tested indoors from 0.56 to 4.42 meters, and the distance is directly estimated from the pulses transit time. The precision within these working distances ranges from 4cm to 7cm, reflected in a Signal-to-Noise Ratio (SNR) between 12dB and 18dB. The design requires a calibration procedure to correct systematic errors in the range measurements, induced by two sources: the timing offset due to architecture-inherent differences in the optoelectronic paths and a supplementary bias resulting from the design, which renders an intensity dependence and is denoted time-walk. The calibrated system achieves a mean accuracy of 1cm. Two distinct target materials are used for characterization and performance evaluation: a metallic automotive paint and a diffuse material. This selection is representative of two extremes of actual LiDAR applications. The optical and electronic characterization is thoroughly detailed, including the recognition of a good agreement between empirical observations and simulations in ZEMAX, for optical design, and in a SPICE software, for the electrical subsystem. The foremost meaningful limitation of the implemented design is identified as an outcome of the leading-edge discrimination. A proposal for a Constant Fraction Discriminator addressing sub-millimetric accuracy is provided to replace the previous signal processing element. This modification is mandatory to virtually eliminate the aforementioned systematic bias in range sensing due to the intensity dependency. A further crucial addition is a scanning mechanism to supply the required Field-of-View (FOV) for automotive usage. The opto-electromechanical guidelines to interface a MEMS micromirror scanner, achieving a 46º×17º FOV, with the LiDAR sensor are furnished. Ultimately, a proof-of-principle to the use of polarization in material classification for advanced processing is carried out, aiming to complement the ToF measurements. The original design is modified to include a variable wave retarder, allowing the simultaneous detection of orthogonal linear polarization states using a single detector. The material classification with polarization sensing is tested with the previously referred materials culminating in an 87% and 11% degree of linear polarization retention from the metallic paint and the diffuse material, respectively, computed by Stokes parameters calculus. The procedure was independently validated under the same conditions with a micro-polarizer camera (92% and 13% polarization retention).O intuito primordial do trabalho reportado no presente documento é o desenvolvimento de um sensor LiDAR funcional, que permita validar o conceito de medição direta do tempo de voo de pulsos óticos para a estimativa de distância, e a aquisição de conhecimento crítico respeitante a aspetos fundamentais que prejudicam a performance do sensor, ambicionando melhorias futuras para um sensor endereçado para aplicações automóveis. Destarte, o sistema LiDAR é implementado através de uma arquitetura que engloba tanto funções óticas como eletrónicas, sendo posteriormente caracterizado através de uma sequência de testes experimentais comumente aplicáveis em benchmarking de sensores LiDAR. O design tira partido de um díodo de laser híbrido (pulsado a 6kHz, largura temporal de 46ns; comprimento de onda de pico de 919nm e largura espetral de 5nm), um fotodíodo PIN para detetar a radiação refletida, um andar de transamplificação e dois conversores tempo-digital, com discriminação temporal com threshold constante para marcar o tempo de trânsito entre emissão e receção. Ademais, um design modular flexível é adotado através de duas PCBs independentes, compondo o transmissor e o recetor (deteção e processamento de sinal). A divergência global do feixe emitido para o ambiente circundante é 0.4º×1º, apresentando uma potência ótica de pico de 60W (eficiência de 87% na transmissão). O sensor é testado em ambiente fechado, entre 0.56 e 4.42 metros. A precisão dentro das distâncias de trabalho varia entre 4cm e 7cm, o que se reflete numa razão sinal-ruído entre 12dB e 18dB. O design requer calibração para corrigir erros sistemáticos nas distâncias adquiridas devido a duas fontes: o desvio no ToF devido a diferenças nos percursos optoeletrónicos, inerentes à arquitetura, e uma dependência adicional da intensidade do sinal refletido, induzida pela técnica de discriminação implementada e denotada time-walk. A exatidão do sistema pós-calibração perfaz um valor médio de 1cm. Dois alvos distintos são utilizados durante a fase de caraterização e avaliação performativa: uma tinta metálica aplicada em revestimentos de automóveis e um material difusor. Esta seleção é representativa de dois cenários extremos em aplicações reais do LiDAR. A caraterização dos subsistemas ótico e eletrónico é minuciosamente detalhada, incluindo a constatação de uma boa concordância entre observações empíricas e simulações óticas em ZEMAX e elétricas num software SPICE. O principal elemento limitante do design implementado é identificado como sendo a técnica de discriminação adotada. Por conseguinte, é proposta a substituição do anterior bloco por uma técnica de discriminação a uma fração constante do pulso de retorno, com exatidões da ordem sub-milimétrica. Esta modificação é imperativa para eliminar o offset sistemático nas medidas de distância, decorrente da dependência da intensidade do sinal. Uma outra inclusão de extrema relevância é um mecanismo de varrimento que assegura o cumprimento dos requisitos de campo de visão para aplicações automóveis. As diretrizes para a integração de um micro-espelho no sensor concebido são providenciadas, permitindo atingir um campo de visão de 46º×17º. Conclusivamente, é feita uma prova de princípio para a utilização da polarização como complemento das medições do tempo de voo, de modo a suportar a classificação de materiais em processamento avançado. A arquitetura original é modificada para incluir uma lâmina de atraso variável, permitindo a deteção de estados de polarização ortogonais com um único fotodetetor. A classificação de materiais através da aferição do estado de polarização da luz refletida é testada para os materiais supramencionados, culminando numa retenção de polarização de 87% (tinta metálica) e 11% (difusor), calculados através dos parâmetros de Stokes. O procedimento é independentemente validado com uma câmara polarimétrica nas mesmas condições (retenção de 92% e 13%)

    Design and Construction of a 3D Scanner and Integration to a 3D Printer (accessible low cost and open source reverse engineering)

    Get PDF
    Built equipment has a 3D scanner with a principle in laser triangulation, integrated to a 3D printer based on fused deposition modeling. The same printer hardware has been used to integrate the peripherals of the scanner: lasers and rotating platform, the camera connects directly to a computer that has software developed to handle the functionalities of the scanner, which obtains a point cloud, and due to integration of postprocessing (surface reconstruction) and laminate tools (g-code), a file is automatically generated ready for interpretation in the 3D printer, closing the reproduction cycle of a model. Due to its low cost and open source, this prototype made accessible performing reverse engineer of an object by means of digital acquisition (3D scanner) and allows its total reproduction (3D printing). &nbsp

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin

    Development of an automatic discharge system for small filter presses

    Get PDF

    Optical design study, testing and qualification of a Schwarzschild-Couder telescope for CTA and an assessment on the Intensity Interferometry capabilities with CTA

    Get PDF
    There is a growing common effort in the very high energy community towards the development of new research infrastructures to answer the fundamental questions of modern high-energy astrophysics and astroparticle physics. The Cherenkov Telescope Array Observatory (CTAO) is an international project aiming to deploy two separate arrays to observe the whole VHE sky between E = 20 GeV up to E = 300 TeV in a long term plan of about 30 years of operations. CTA is designed to increase the sensitivity by a factor 10 at 1 TeV, to enlarge the detection area, the angular resolution and the field of view over the facilities operating today. The observatory will be characterized by high flexibility, enhanced monitoring and deep survey capabilities, short time scale and simultaneous observations in multiple fields. This PhD thesis addresses the optical design study and testing of dual mirror Imaging Atmospheric Cherenkov Telescopes (IACTs) for the incoming CTAO. All of the IACTs facilities currently operating rely on single mirror solutions, which are mostly parabolic or Davies-Cotton optical designs, however there is a novel interest in the development of dual mirror configurations following the Schwarzschild-Couder optical design. This peculiar design, based on two highly aspherical mirrors promises wide-field, aplanatic telescopes characterized by small f-numbers and more compact structures. Dual mirror solutions allow use smaller camera pixels (3-6 mm) based on Silicon Photo Multiplier technology in substitution of the larger Photo Multiplier Tubes (1 inch) currently in use. The increased complexity in terms of optics manufacturing, replication and alignment is motivated from the attractive new capabilities of such configuration. In this context the Italian National Institute for Astrophysics (INAF) supported by the Italian Ministry of Education, University and Research (MIUR), is developing a small sized telescope prototype for CTA, named ASTRI, which is based upon the Schwarzschild-Couder optical design. The present work deals with the challenging realization of this optical configuration that has never been applied to IACTs. After two introductory chapters on the gamma-ray astronomy and the ASTRI optical design and its main subsystems (chapters 1 and 2), the performances of this system are compared with those of the other common wide-field telescopes in use for Cherenkov observations and for other applications in astrophysics (chapter 3). This comparative study is based on a commercial ray tracing software into which the optical designs of the envisaged telescopes are reproduced. Subsequently in chapter 4, an extended study of the ASTRI capabilities in relation to the performance and environmental requirements issued by CTA is presented in a detailed analysis of compliance supported by ray tracing simulations, finite element analysis and tolerance studies. In chapter 5 the work on the qualification tests of the secondary mirror gives an insight into the complexity of the Schwarzschild-Couder optics. The realization of this optical element is challenging in relation to currently available technologies, in particular concerning the cost requirements imposed by the CTA project. These constraints and the large sagitta of the mirror (190 mm) requires the use of the hot slumping technique in substitution of the cold slumping and diamond milling approaches usually used in the manufacturing of mirrors for Cherenkov applications. The results of a careful and extended test campaign on a mirror prototype have indicated that this manufacturing technique can provide a reliable engineering process of production for such large, highly aspherical optics. With a perspective on the science with future large telescopes as those provided by CTA, an assessment study upon the potentialities of the Intensity Interferometry (II) technique is carried out in chapter 6. In particular, a new kind of observation based on II is explored; the method aims to estimate the direct distance of the celestial objects. The order of magnitudes of the problem parameters space and the sensitivity that CTA and other future large observatories should achieve is estimated by means of numerical simulations. A short-term concept of experiment to assess the reliability of this new method is also discussed in relation to a pilot measurement that could be pursued with the state of the art technology

    Through-Life Monitoring of the impact of vibration on the reliability of area array packages using Non- Destructive Testing

    Get PDF
    In order to keep up with the demands for faster, cheaper and smaller electronics, the packaging industry has evolved tremendously. Area array packages like flip chips and ball grid arrays are therefore widely used in modern day electronics. However, from the reliability standpoint, solder joints in these area array packages are often the weakest link. In case of harsh vibration environments like military and automobile applications, joint failure mainly occurs due to the high stress incurred during extreme environmental conditions that lead to fatigue failures. This thesis aims to study the effects of real time vibration on area array packages (flip chips in particular) using acoustic micro imaging for through life monitoring of the solder joints. Since real time vibration on solder joints have not been studied before, the various steps for successful testing, through life monitoring of the solder joints and data analysis will be investigated and discussed. Based on automobile industry standards, a real time vibration profile was obtained with the help of Delphi experts, who are the industry collaborators of this project. Due to its strong capability to detect discontinuities within materials and interconnections, Acoustic Micro Imaging (AMI) also known as Scanning Acoustic Microscopy (CSAM) has been used to monitor the solder joints. This approach has not previously been used as an effective tool in monitoring solder joints through life performance in vibration testing. The research regime proposed in this thesis was to monitor the health of solder joints through ultrasound images from beginning to failure, and to see how cracks initiate and propagate in them. The effect of the relative position and orientation on the reliability of the solder joints and the flip chips in the PCB was also studied. The data collected was analysed using MATLAB. The results have shown that three types of solder joints- healthy, partially fractured or fractured are formed near the time of complete failure of a flip chip. When about 70- 80% of the flip chips are either partially fractured or fractured a flip chip is expected to fail. The mean pixel intensity and area change in the acoustic image of a partially fractured or fully fractured joint tends to be higher compared to a healthy joint. Crack initiation in a joint occurs at around 35-40% cycling and propagates linearly till 80-85% cycling after which a joint fails. A statistical analysis done on the solder joints showed that the intensity distribution of healthy joints follow a simple Gaussian distribution while that of partially fractured or fractured joint can only be represented by using a mixture of Gaussians. The solder joints near the board edges are the least reliable in a vibration environment. However, solder joints with back to back connections are more reliable than the ones placed in one sided orientation. The most reliable flip chip orientation in a vibration environment is the back to back connection with no offset which was actually found to be the least reliable in the case of thermal cycling. Based on the analysis of the results, a few design guidelines for flip chip layout and orientations in a PCB has also been proposed in this work

    Laser ablation of polymer waveguide and embedded mirror for optically-enabled printed circuit boards (OEPCB)

    Get PDF
    Due to their inherent BW capacity, optical interconnect (OI) offers a means of replacement to BW limited copper as bottlenecks begin to appear within the various interconnect levels of electronics systems. Low-cost optically enabled printed circuit boards are a key milestone on many electronics roadmaps, e.g. iNEMI. Current OI solutions found in industry are based upon optical fibres and are capable of providing a suitable platform for inter-board applications especially on the backplane. However, to allow component assembly onto high BW interconnects, an integral requirement for intra-board applications, optically enabled printed circuit boards containing waveguides are essential. Major barriers to the deployment of optical printed circuit boards include the compatibility of the technique, the cost of acquiring OI and the optical power budget. The purpose of this PhD research programme is to explore suitable techniques to address these barriers, primarily by means of laser material processing using UV and IR source lasers namely 248 nm KrF Excimer, 355 nm UV Nd:YAG and 10.6 µm IR CO2. The use of these three main lasers, the trio of which dominates most PCB production assembly, provides underpinning drive for the deployment of this technology into the industry at a very low cost without the need for any additional system or system modification. It further provides trade-offs among the suitable candidates in terms of processing speed, cost and quality of waveguides that could be achieved. This thesis presents the context of the research and the underlying governing science, i.e. theoretical analysis, involving laser-matter interactions. Experimental investigation of thermal (or pyrolitic) and bond-breaking (or photolytic) nature of laser ablation was studied in relation to each of the chosen lasers with regression analysis used to explain the experimental results. Optimal parameters necessary for achieving minimum Heat Affected Zone (HAZ) and surface/wall roughness were explored, both of which are key to achieving low loss waveguides. While photochemical dominance – a function of wavelength and pulse duration – is desired in laser ablation of photopolymers, the author has been able to find out that photothermallyprocessed materials, for example at 10.6 µm, can also provide desirable waveguides. Although there are literature information detailing the effect of certain parameters such as fluence, pulse repetition rate, pulse duration and wavelength among others, in relation to the etch rate of different materials, the machining of new materials requires new data to be obtained. In fact various models are available to try to explain the laser-matter interaction in a mathematical way, but these cannot be taken universally as they are deficient to general applications. For this reason, experimental optimisation appears to be the logical way forward at this stage of the research and thus requiring material-system characterisation to be conducted for each case thereby forming an integral achievement of this research. In this work, laser ablation of a single-layer optical polymer (Truemode™) multimode waveguides were successfully demonstrated using the aforementioned chosen lasers, thus providing opportunities for rapid deployment of OI to the PCB manufacturing industry. Truemode™ was chosen as it provides a very low absorption loss value < 0.04 dB/cm at 850 nm datacom wavelength used for VSR interconnections – a key to optical power budget – and its compatibility with current PCB fabrication processes. A wet-Truemode™ formulation was used which required that optical polymer layer on an FR4 substrate be formed using spin coating and then UV-cured in a nitrogen oxygen-free chamber. Layer thickness, chiefly influenced by spinning speed and duration, was studied in order to meet the optical layer thickness requirement for multimode (typically > 9 µm) waveguides. Two alternative polymers, namely polysiloxane-based photopolymer (OE4140 and OE 4141) from Dow Corning and PMMA, were sparingly utilized at some point in the research, mainly during laser machining using UV Nd:YAG and CO2 lasers. While Excimer laser was widely considered for polymer waveguide due to its high quality potential, the successful fabrication at 10.6 µm IR and 355 nm UV wavelengths and at relatively low propagation loss at datacom wavelength of 850 nm (estimated to be < 1.5 dB/cm) were unprecedented. The author considered further reduction in the optical loss by looking at the effect of fluence, power, pulse repetition rate, speed and optical density on the achievable propagation but found no direct relationship between these parameters; it is therefore concluded that process optimisation is the best practice. In addition, a novel in-plane 45-degree coupling mirror fabrication using Excimer laser ablation was demonstrated for the first time, which was considered to be vital for communication between chips (or other suitable components) at board-level

    Factories of the Future

    Get PDF
    Engineering; Industrial engineering; Production engineerin
    • …
    corecore