12 research outputs found

    DESIGN, DEVELOPMENT, AND EVALUATION OF A DISCRETELY ACTUATED STEERABLE CANNULA

    Get PDF
    Needle-based procedures require the guidance of the needle to a target region to deliver therapy or to remove tissue samples for diagnosis. During needle insertion, needle deflection occurs due to needle-tissue interaction which deviates the needle from its insertion direction. Manipulating the needle at the base provides limited control over the needle trajectory after the insertion. Furthermore, some sites are inaccessible using straight-line trajectories due to delicate structures that need to be avoided. The goal of this research is to develop a discretely actuated steerable cannula to enable active trajectory corrections and achieve accurate targeting in needle-based procedures. The cannula is composed of straight segments connected by shape memory alloy (SMA) actuators and has multiple degrees-of-freedom. To control the motion of the cannula two approaches have been explored. One approach is to measure the cannula configuration directly from the imaging modality and to use this information as a feedback to control the joint motion. The second approach is a model-based controller where the strain of the SMA actuator is controlled by controlling the temperature of the SMA actuator. The constitutive model relates the stress, strain and the temperature of the SMA actuator. The uniaxial constitutive model of the SMA that describes the tensile behavior was extended to one-dimensional pure- bending case to model the phase transformation of the arc-shaped SMA wire. An experimental characterization procedure was devised to obtain the parameters of the SMA that are used in the constitutive model. Experimental results demonstrate that temperature feedback can be effectively used to control the strain of the SMA actuator and image feedback can be reliably used to control the joint motion. Using tools from differential geometry and the configuration control approach, motion planning algorithms were developed to create pre-operative plans that steer the cannula to a desired surgical site (nodule or suspicious tissue). Ultrasound-based tracking algorithms were developed to automate the needle insertion procedure using 2D ultrasound guidance. The effectiveness of the proposed in-plane and out-of-plane tracking methods were demonstrated through experiments inside tissue phantom made of gelatin and ex-vivo experiments. An optical coherence tomography probe was integrated into the cannula and in-situ microscale imaging was performed. The results demonstrate the use of the cannula as a delivery mechanism for diagnostic applications. The tools that were developed in this dissertation form the foundations of developing a complete steerable-cannula system. It is anticipated that the cannula could be used as a delivery mechanism in image-guided needle-based interventions to introduce therapeutic and diagnostic tools to a target region

    Robotic System Development for Precision MRI-Guided Needle-Based Interventions

    Get PDF
    This dissertation describes the development of a methodology for implementing robotic systems for interventional procedures under intraoperative Magnetic Resonance Imaging (MRI) guidance. MRI is an ideal imaging modality for surgical guidance of diagnostic and therapeutic procedures, thanks to its ability to perform high resolution, real-time, and high soft tissue contrast imaging without ionizing radiation. However, the strong magnetic field and sensitivity to radio frequency signals, as well as tightly confined scanner bore render great challenges to developing robotic systems within MRI environment. Discussed are potential solutions to address engineering topics related to development of MRI-compatible electro-mechanical systems and modeling of steerable needle interventions. A robotic framework is developed based on a modular design approach, supporting varying MRI-guided interventional procedures, with stereotactic neurosurgery and prostate cancer therapy as two driving exemplary applications. A piezoelectrically actuated electro-mechanical system is designed to provide precise needle placement in the bore of the scanner under interactive MRI-guidance, while overcoming the challenges inherent to MRI-guided procedures. This work presents the development of the robotic system in the aspects of requirements definition, clinical work flow development, mechanism optimization, control system design and experimental evaluation. A steerable needle is beneficial for interventional procedures with its capability to produce curved path, avoiding anatomical obstacles or compensating for needle placement errors. Two kinds of steerable needles are discussed, i.e. asymmetric-tip needle and concentric-tube cannula. A novel Gaussian-based ContinUous Rotation and Variable-curvature (CURV) model is proposed to steer asymmetric-tip needle, which enables variable curvature of the needle trajectory with independent control of needle rotation and insertion. While concentric-tube cannula is suitable for clinical applications where a curved trajectory is needed without relying on tissue interaction force. This dissertation addresses fundamental challenges in developing and deploying MRI-compatible robotic systems, and enables the technologies for MRI-guided needle-based interventions. This study applied and evaluated these techniques to a system for prostate biopsy that is currently in clinical trials, developed a neurosurgery robot prototype for interstitial thermal therapy of brain cancer under MRI guidance, and demonstrated needle steering using both asymmetric tip and pre-bent concentric-tube cannula approaches on a testbed

    Tendon-Driven Notched Needle for Robot-Assisted Prostate Interventions

    Get PDF
    M.S

    Shape Memory Alloy Actuators and Sensors for Applications in Minimally Invasive Interventions

    Get PDF
    Reduced access size in minimally invasive surgery and therapy (MIST) poses several restriction on the design of the dexterous robotic instruments. The instruments should be developed that are slender enough to pass through the small sized incisions and able to effectively operate in a compact workspace. Most existing robotic instruments are operated by big actuators, located outside the patient’s body, that transfer forces to the end effector via cables or magnetically controlled actuation mechanism. These instruments are certainly far from optimal in terms of their cost and the space they require in operating room. The lack of adequate sensing technologies make it very challenging to measure bending of the flexible instruments, and to measure tool-tissue contact forces of the both flexible and rigid instruments during MIST. Therefore, it requires the development of the cost effective miniature actuators and strain/force sensors. Having several unique features such as bio-compatibility, low cost, light weight, large actuation forces and electrical resistivity variations, the shape memory alloys (SMAs) show promising applications both as the actuators and strain sensors in MIST. However, highly nonlinear hysteretic behavior of the SMAs hinders their use as actuators. To overcome this problem, an adaptive artificial neural network (ANN) based Preisach model and a model predictive controller have been developed in this thesis to precisely control the output of the SMA actuators. A novel ultra thin strain sensor is also designed using a superelastic SMA wire, which can be used to measure strain and forces for many surgical and intervention instruments. A da Vinci surgical instrument is sensorized with these sensors in order to validate their force sensing capability

    Sensorisation of a novel biologically inspired flexible needle

    Get PDF
    Percutaneous interventions are commonly performed during minimally invasive brain surgery, where a straight rigid instrument is inserted through a small incision to access a deep lesion in the brain. Puncturing a vessel during this procedure can be a life-threatening complication. Embedding a forward-looking sensor in a rigid needle has been proposed to tackle this problem; however, using a rigid needle, the procedure needs to be interrupted if a vessel is detected. Steerable needle technology could be used to avoid obstacles, such as blood vessels, due to its ability to follow curvilinear paths, but research to date was lacking in this respect. This thesis aims to investigate the deployment of forward-looking sensors for vessel detection in a steerable needle. The needle itself is based on a bioinspired programmable bevel-tip needle (PBN), a multi-segment design featuring four hollow working channels. In this thesis, laser Doppler flowmetry (LDF) is initially characterised to ensure that the sensor fulfils the minimum requirements for it to be used in conjunction with the needle. Subsequently, vessel reconstruction algorithms are proposed. To determine the axial and off-axis position of the vessel with respect to the probe, successive measurements of the LDF sensor are used. Ideally, full knowledge of the vessel orientation is required to execute an avoidance strategy. Using two LDF probes and a novel signal processing method described in this thesis, the predicted possible vessel orientations can be reduced to four, a setup which is explored here to demonstrate viable obstacle detection with only partial sensor information. Relative measurements from four LDF sensors are also explored to classify possible vessel orientations in full and without ambiguity, but under the assumption that the vessel is perpendicular to the needle insertion axis. Experimental results on a synthetic grey matter phantom are presented, which confirm these findings. To release the perpendicularity assumption, the thesis concludes with the description of a machine learning technique based on a Long Short-term memory network, which enables a vessel's spatial position, cross-sectional diameter and full pose to be predicted with sub-millimetre accuracy. Simulated and in-vitro examinations of vessel detection with this approach are used to demonstrate effective predictive ability. Collectively, these results demonstrate that the proposed steerable needle sensorisation is viable and could lead to improved safety during robotic assisted needle steering interventions.Open Acces

    Image-Guided Robot-Assisted Needle Intervention Devices and Methods to Improve Targeting Accuracy

    Get PDF
    This dissertation addresses the development of medical devices, image-guided robots, and their application in needle-based interventions, as well as methods to improve accuracy and safety in clinical procedures. Needle access is an essential component of minimally invasive diagnostic and therapeutic procedures. Image-guiding devices are often required to help physicians handle the needle based on the images. Integrating robotic accuracy and precision with digital medical imaging has the potential to improve the clinical outcomes. The dissertation presents two robotic devices for interventions under Magnetic Resonance Imaging (MRI) respectively Computed Tomography (CT) – Ultrasound(US) cross modality guidance. The MRI robot is a MR Safe Remote Center of Motion (RCM) robot for direct image-guided needle interventions such as brain surgery. The dissertation also presents the integration of the robot with an intraoperative MRI scanner, and preclinical tests for deep brain needle access. The CT-Ultrasound guidance uses a robotic manipulator to handle an US probe within a CT scanner. The dissertation presents methods related to the co-registration of multi-image spaces with an intermediary frame, experiments for needle targeting. The dissertation also presents method on using optical tracking measurements specifically for medical robots. The method was derived to test the robots presented above. With advanced image-guidance, such as the robotic approaches, needle targeting accuracy may still be deteriorated by errors related to needle defections. Methods and associated devices for needle steering on the straight path are presented. These are a robotic approach that uses real-time ultrasound guidance to steer the needle; Modeling and testing of a method to markedly reduce targeting errors with bevel-point needles; Dynamic design, manufacturing, and testing of a novel core biopsy needle with straighter path, power assistance, reduced noise, and safer operation. Overall, the dissertation presents several developments that contribute to the field of medical devices, image-guided robots, and needle interventions. These include robot testing methods that can be used by other researchers, needle steering methods that can be used directly by physicians or for robotic devices, as well as several methods to improve the accuracy in image-guided interventions. Collectively, these contribute to the field and may have a significant clinical impact

    Design, Modeling and Control of Micro-scale and Meso-scale Tendon-Driven Surgical Robots

    Get PDF
    Manual manipulation of passive surgical tools is time consuming with uncertain results in cases of navigating tortuous anatomy, avoiding critical anatomical landmarks, and reaching targets not located in the linear range of these tools. For example, in many cardiovascular procedures, manual navigation of a micro-scale passive guidewire results in increased procedure times and radiation exposure. This thesis introduces the design of two steerable guidewires: 1) A two degree-of-freedom (2-DoF) robotic guidewire with orthogonally oriented joints to access points in a three dimensional workspace, and 2) a micro-scale coaxially aligned steerable (COAST) guidewire robot that demonstrates variable and independently controlled bending length and curvature of the distal end. The 2-DoF guidewire features two micromachined joints from a tube of superelastic nitinol of outer diameter 0.78 mm. Each joint is actuated with two nitinol tendons. The joints that are used in this robot are called bidirectional asymmetric notch (BAN) joints, and the advantages of these joints are explored and analyzed. The design of the COAST robotic guidewire involves three coaxially aligned tubes with a single tendon running centrally through the length of the robot. The outer tubes are made from micromachined nitinol allowing for tendon-driven bending of the robot at variable bending curvatures, while an inner stainless steel tube controls the bending length of the robot. By varying the lengths of the tubes as well as the tendon, and by insertion and retraction of the entire assembly, various joint lengths and curvatures may be achieved. Kinematic and static models, a compact actuation system, and a controller for this robot are presented. The capability of the robot to accurately navigate through phantom anatomical bifurcations and tortuous angles is also demonstrated in three dimensional phantom vasculature. At the meso-scale, manual navigation of passive pediatric neuroendoscopes for endoscopic third ventriculostomy may not reach target locations in the patient's ventricle. This work introduces the design, analysis and control of a meso-scale two degree-of-freedom robotic bipolar electrocautery tool that increases the workspace of the neurosurgeon. A static model is proposed for the robot joints that avoids problems arising from pure kinematic control. Using this model, a control system is developed that comprises of a disturbance observer to provide precise force control and compensate for joint hysteresis. A handheld controller is developed and demonstrated in this thesis. To allow the clinician to estimate the shape of the steerable tools within the anatomy for both micro-scale and meso-scale tools, a miniature tendon force sensor and a high deflection shape sensor are proposed and demonstrated. The force sensor features a compact design consisting of a single LED, dual-phototransistor, and a dual-screen arrangement to increase the linear range of sensor output and compensate for external disturbances, thereby allowing force measurement of up to 21 N with 99.58 % accuracy. The shape sensor uses fiber Bragg grating based optical cable mounted on a micromachined tube and is capable of measuring curvatures as high as 145 /m. These sensors were incorporated and tested in the guidewire and the neuroendoscope tool robots and can provide robust feedback for closed-loop control of these devices in the future.Ph.D

    DESIGN, DEVELOPMENT, AND EVALUATION OF A MRI-GUIDED NEUROSURGICAL INTRACRANIAL ROBOT

    Get PDF
    Brain tumors are among the most feared complications of cancer. Their treatment is challenging because of the lack of good imaging modality and the inability to remove the complete tumor. To overcome this limitation, we propose to develop a Magnetic Resonance Imaging (MRI)-compatible neurosurgical robot. The robot can be operated under continuous MRI, and the Magnetic Resonance (MR) images can be used to supplement physicians' visual capabilities, resulting in precise tumor removal. We have developed two prototypes of the Minimally Invasive Neurosurgical Intracranial Robot (MINIR) using MRI compatible materials and shape memory alloy (SMA) actuators. The major difference between the two robots is that one uses SMA wire actuators and the other uses SMA spring actuators combined with the tendon-sheath mechanism. Due to space limitation inside the robot body and the strong magnetic field in the MRI scanner, most sensors cannot be used inside the robot body. Hence, one possible approach is to rely on image feedback to control the motion of the robot. In this research, as a preliminary approach, we have relied on image feedback from a camera to control the motion of the robot. Since the image tracking algorithm may fail in some situations, we also developed a temperature feedback control scheme which served as a backup controller for the robot. Experimental results demonstrated that both image feedback and temperature feedback can be used reliably to control the joint motion of the robots. A series of MRI compatibility tests were performed to evaluate the MRI compatibility of the robots and to assess the degradation in image quality. The experimental results demonstrated that the robots are MRI compatible and created no significant image distortion in the MR images during actuation. The accomplishments presented in this dissertation represent a significant development of using SMA actuators to actuate MRI-compatible robots. It is anticipated that, in the future, continuous MR imaging would be used reliably to control the motion of the robot. It is aspired that the robot design and the control methods of SMA actuators developed in this research can be utilized in practical applications

    Modeling, Analysis, Force Sensing and Control of Continuum Robots for Minimally Invasive Surgery

    Get PDF
    This dissertation describes design, modeling and application of continuum robotics for surgical applications, specifically parallel continuum robots (PCRs) and concentric tube manipulators (CTMs). The introduction of robotics into surgical applications has allowed for a greater degree of precision, less invasive access to more remote surgical sites, and user-intuitive interfaces with enhanced vision systems. The most recent developments have been in the space of continuum robots, whose exible structure create an inherent safety factor when in contact with fragile tissues. The design challenges that exist involve balancing size and strength of the manipulators, controlling the manipulators over long transmission pathways, and incorporating force sensing and feedback from the manipulators to the user. Contributions presented in this work include: (1) prototyping, design, force sensing, and force control investigations of PCRs, and (2) prototyping of a concentric tube manipulator for use in a standard colonoscope. A general kinetostatic model is presented for PCRs along with identification of multiple physical constraints encountered in design and construction. Design considerations and manipulator capabilities are examined in the form of matrix metrics and ellipsoid representations. Finally, force sensing and control are explored and experimental results are provided showing the accuracy of force estimates based on actuation force measurements and control capabilities. An overview of the design requirements, manipulator construction, analysis and experimental results are provided for a CTM used as a tool manipulator in a traditional colonoscope. Currently, tools used in colonoscopic procedures are straight and exit the front of the scope with 1 DOF of operation (jaws of a grasper, tightening of a loop, etc.). This research shows that with a CTM deployed, the dexterity of these tools can be increased dramatically, increasing accuracy of tool operation, ease of use and safety of the overall procedure. The prototype investigated in this work allows for multiple tools to be used during a single procedure. Experimental results show the feasibility and advantages of the newly-designed manipulators
    corecore