3,198 research outputs found

    A Novel Framework for Highlight Reflectance Transformation Imaging

    Get PDF
    We propose a novel pipeline and related software tools for processing the multi-light image collections (MLICs) acquired in different application contexts to obtain shape and appearance information of captured surfaces, as well as to derive compact relightable representations of them. Our pipeline extends the popular Highlight Reflectance Transformation Imaging (H-RTI) framework, which is widely used in the Cultural Heritage domain. We support, in particular, perspective camera modeling, per-pixel interpolated light direction estimation, as well as light normalization correcting vignetting and uneven non-directional illumination. Furthermore, we propose two novel easy-to-use software tools to simplify all processing steps. The tools, in addition to support easy processing and encoding of pixel data, implement a variety of visualizations, as well as multiple reflectance-model-fitting options. Experimental tests on synthetic and real-world MLICs demonstrate the usefulness of the novel algorithmic framework and the potential benefits of the proposed tools for end-user applications.Terms: "European Union (EU)" & "Horizon 2020" / Action: H2020-EU.3.6.3. - Reflective societies - cultural heritage and European identity / Acronym: Scan4Reco / Grant number: 665091DSURF project (PRIN 2015) funded by the Italian Ministry of University and ResearchSardinian Regional Authorities under projects VIGEC and Vis&VideoLa

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    A deep learning framework for quality assessment and restoration in video endoscopy

    Full text link
    Endoscopy is a routine imaging technique used for both diagnosis and minimally invasive surgical treatment. Artifacts such as motion blur, bubbles, specular reflections, floating objects and pixel saturation impede the visual interpretation and the automated analysis of endoscopy videos. Given the widespread use of endoscopy in different clinical applications, we contend that the robust and reliable identification of such artifacts and the automated restoration of corrupted video frames is a fundamental medical imaging problem. Existing state-of-the-art methods only deal with the detection and restoration of selected artifacts. However, typically endoscopy videos contain numerous artifacts which motivates to establish a comprehensive solution. We propose a fully automatic framework that can: 1) detect and classify six different primary artifacts, 2) provide a quality score for each frame and 3) restore mildly corrupted frames. To detect different artifacts our framework exploits fast multi-scale, single stage convolutional neural network detector. We introduce a quality metric to assess frame quality and predict image restoration success. Generative adversarial networks with carefully chosen regularization are finally used to restore corrupted frames. Our detector yields the highest mean average precision (mAP at 5% threshold) of 49.0 and the lowest computational time of 88 ms allowing for accurate real-time processing. Our restoration models for blind deblurring, saturation correction and inpainting demonstrate significant improvements over previous methods. On a set of 10 test videos we show that our approach preserves an average of 68.7% which is 25% more frames than that retained from the raw videos.Comment: 14 page

    Colonoscopy Image Pre-Processing for the Development of Computer-Aided Diagnostic Tools

    Get PDF
    Colorrectal cancer is the third most frequently diagnosed cancer worldwide. The American Cancer Society estimates that there will be almost 100,000 new patients diagnosed with colorectal cancer and that around 50,000 people will die as a consequence of this in 2016. The increase of life expectancy and the increment of the number of diagnostic tests conducted have had a great impact on the amount of cancers being detected. Among other diagnostic tools, colonoscopy is the most prevalent. In order to help endoscopists cope with the increasing amount of tests that have to be carried out, there exists a need to develop automated tools that aid diagnosis. The characteristics of the colon make pre-processing essential to eliminate artefacts that degrade the quality of exploratory images. The goal of this chapter is to describe the most common issues of colonoscopic imagery as well the existing methods for their optimal detection and correction

    Embedded polarizing filters to separate diffuse and specular reflection

    Full text link
    Polarizing filters provide a powerful way to separate diffuse and specular reflection; however, traditional methods rely on several captures and require proper alignment of the filters. Recently, camera manufacturers have proposed to embed polarizing micro-filters in front of the sensor, creating a mosaic of pixels with different polarizations. In this paper, we investigate the advantages of such camera designs. In particular, we consider different design patterns for the filter arrays and propose an algorithm to demosaic an image generated by such cameras. This essentially allows us to separate the diffuse and specular components using a single image. The performance of our algorithm is compared with a color-based method using synthetic and real data. Finally, we demonstrate how we can recover the normals of a scene using the diffuse images estimated by our method.Comment: ACCV 201

    Robust Specularity Removal from Hand-held Videos

    Get PDF
    Specular reflection exists when one tries to record a photo or video through a transparent glass medium or opaque surfaces such as plastics, ceramics, polyester and human skin, which can be well described as the superposition of a transmitted layer and a reflection layer. These specular reflections often confound the algorithms developed for image analysis, computer vision and pattern recognition. To obtain a pure diffuse reflection component, specularity (highlights) needs to be removed. To handle this problem, a novel and robust algorithm is formulated. The contributions of this work are three-fold.;First, the smoothness of the video along with the temporal coherence and illumination changes are preserved by reducing the flickering and jagged edges caused by hand-held video acquisition and homography transformation respectively.;Second, this algorithm is designed to improve upon the state-of-art algorithms by automatically selecting the region of interest (ROI) for all the frames, reducing the computational time and complexity by utilizing the luminance (Y) channel and exploiting the Augmented Lagrange Multiplier (ALM) with Alternating Direction Minimizing (ADM) to facilitate the derivation of solution algorithms.;Third, a quantity metrics is devised, which objectively quantifies the amount of specularity in each frame of a hand-held video. The proposed specularity removal algorithm is compared against existing state-of-art algorithms using the newly-developed quantity metrics. Experimental results validate that the developed algorithm has superior performance in terms of computation time, quality and accuracy

    Detection and localization of specular surfaces using image motion cues

    Get PDF
    Cataloged from PDF version of article.Successful identification of specularities in an image can be crucial for an artificial vision system when extracting the semantic content of an image or while interacting with the environment. We developed an algorithm that relies on scale and rotation invariant feature extraction techniques and uses motion cues to detect and localize specular surfaces. Appearance change in feature vectors is used to quantify the appearance distortion on specular surfaces, which has previously been shown to be a powerful indicator for specularity (Doerschner et al. in Curr Biol, 2011). The algorithm combines epipolar deviations (Swaminathan et al. in Lect Notes Comput Sci 2350:508-523, 2002) and appearance distortion, and succeeds in localizing specular objects in computer-rendered and real scenes, across a wide range of camera motions and speeds, object sizes and shapes, and performs well under image noise and blur conditions. © 2014 Springer-Verlag Berlin Heidelberg

    Photometric Variability in Earthshine Observations

    Full text link
    The identification of an extrasolar planet as Earth-like will depend on the detection of atmospheric signatures or surface non-uniformities. In this paper we present spatially unresolved flux light curves of Earth for the purpose of studying a prototype extrasolar terrestrial planet. Our monitoring of the photometric variability of earthshine revealed changes of up to 23 % per hour in the brightness of Earth's scattered light at around 600 nm, due to the removal of specular reflection from the view of the Moon. This variability is accompanied by reddening of the spectrum, and results from a change in surface properties across the continental boundary between the Indian Ocean and Africa's east coast. Our results based on earthshine monitoring indicate that specular reflection should provide a useful tool in determining the presence of liquid water on extrasolar planets via photometric observations.Comment: To appear in Astrobiology 9(3). 17 pages, 3 figures, 1 tabl
    corecore