3,681 research outputs found

    Accurate discrimination of conserved coding and non-coding regions through multiple indicators of evolutionary dynamics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The conservation of sequences between related genomes has long been recognised as an indication of functional significance and recognition of sequence homology is one of the principal approaches used in the annotation of newly sequenced genomes. In the context of recent findings that the number non-coding transcripts in higher organisms is likely to be much higher than previously imagined, discrimination between conserved coding and non-coding sequences is a topic of considerable interest. Additionally, it should be considered desirable to discriminate between coding and non-coding conserved sequences without recourse to the use of sequence similarity searches of protein databases as such approaches exclude the identification of novel conserved proteins without characterized homologs and may be influenced by the presence in databases of sequences which are erroneously annotated as coding.</p> <p>Results</p> <p>Here we present a machine learning-based approach for the discrimination of conserved coding sequences. Our method calculates various statistics related to the evolutionary dynamics of two aligned sequences. These features are considered by a Support Vector Machine which designates the alignment coding or non-coding with an associated probability score.</p> <p>Conclusion</p> <p>We show that our approach is both sensitive and accurate with respect to comparable methods and illustrate several situations in which it may be applied, including the identification of conserved coding regions in genome sequences and the discrimination of coding from non-coding cDNA sequences.</p

    A Genome-Wide Analysis of Genetic Diversity inTrypanosoma cruzi Intergenic Regions

    Get PDF
    Background Trypanosoma cruzi is the causal agent of Chagas Disease. Recently, the genomes of representative strains from two major evolutionary lineages were sequenced, allowing the construction of a detailed genetic diversity map for this important parasite. However this map is focused on coding regions of the genome, leaving a vast space of regulatory regions uncharacterized in terms of their evolutionary conservation and/or divergence. Methodology Using data from the hybrid CL Brener and Sylvio X10 genomes (from the TcVI and TcI Discrete Typing Units, respectively), we identified intergenic regions that share a common evolutionary ancestry, and are present in both CL Brener haplotypes (TcII-like and TcIII-like) and in the TcI genome; as well as intergenic regions that were conserved in only two of the three genomes/haplotypes analyzed. The genetic diversity in these regions was characterized in terms of the accumulation of indels and nucleotide changes. Principal Findings Based on this analysis we have identified i) a core of highly conserved intergenic regions, which remained essentially unchanged in independently evolving lineages; ii) intergenic regions that show high diversity in spite of still retaining their corresponding upstream and downstream coding sequences; iii) a number of defined sequence motifs that are shared by a number of unrelated intergenic regions. A fraction of indels explains the diversification of some intergenic regions by the expansion/contraction of microsatellite-like repeats.Fil: Panunzi, Leonardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Agüero, Fernan Gonzalo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; Argentin

    The EM Algorithm and the Rise of Computational Biology

    Get PDF
    In the past decade computational biology has grown from a cottage industry with a handful of researchers to an attractive interdisciplinary field, catching the attention and imagination of many quantitatively-minded scientists. Of interest to us is the key role played by the EM algorithm during this transformation. We survey the use of the EM algorithm in a few important computational biology problems surrounding the "central dogma"; of molecular biology: from DNA to RNA and then to proteins. Topics of this article include sequence motif discovery, protein sequence alignment, population genetics, evolutionary models and mRNA expression microarray data analysis.Comment: Published in at http://dx.doi.org/10.1214/09-STS312 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    Get PDF
    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable researchers to further investigate questions in developmental biology. © 2014 Erwin et al

    Testing the Coding Potential of Conserved Short Genomic Sequences

    Get PDF
    Proposed is a procedure to test whether a genomic sequence contains coding DNA, called a coding potential region. The procedure tests the coding potential of conserved short genomic sequence, in which the assumptions on the probability models of gene structures are relaxed. Thus, it is expected to provide additional candidate regions that contain coding DNAs to the current genomic database. The procedure was applied to the set of highly conserved human-mouse sequences in the genome database at the University of California at Santa Cruz. For sequences containing RefSeq coding exons, the procedure detected 91.3% regions having coding potential in this set, which covers 83% of the human RefSeq coding exons, at a 2.6% false positive rate. The procedure detected 12,688 novel short regions with coding potential at the false discovery rate <0.05; 65.7% of the novel regions are between annotated genes

    Molecular Approaches in Arbuscular Mycorrhizal Research: A Review

    Get PDF
    Arbuscular mycorrhizal fungi (AMF), belonging to phylum Glomeromycota, are among one of the key species groups that inter-connect plants into a functional web. Most of the research work on AMF is focused mainly on taxonomy, phylogeny, ecology, genetics and functional symbiosis with some major insights gained in biology of the fungi in the last decade, with application of molecular methods and revolutionary technological advancement. In this article, we reviewed the current scenario of molecular investigations on AMF all over the world, and compare it with conventional techniques to bring about the pros and cons. Since no technique is a panacea, we advocate the use of both molecular and microscopy methods to characterize AMF communities in plant roots and to construct a robust phylogenetic tree. Key words: Arbuscular mycorrhiza, Molecular methods, Primer, rDNA D. Sharmah et al. Molecular Approaches in Arbuscular Mycorrhizal Research: A Review. J Phytol 2/7 (2010) 75-90

    Applications of Evolutionary Bioinformatics in Basic and Biomedical Research

    Get PDF
    With the revolutionary progress in sequencing technologies, computational biology emerged as a game-changing field which is applied in understanding molecular events of life for not only complementary but also exploratory purposes. Bioinformatics resources and tools significantly help in data generation, organization and analysis. However, there is still a need for developing new approaches built based on a biologist’s point of view. In protein bioinformatics, there are several fundamental problems such as (i) determining protein function; (ii) identifying protein-protein interactions; (iii) predicting the effect of amino acid variants. Here, I present three chapters addressing these problems from an evolutionary perspective. Firstly, I describe a novel search pipeline for protein domain identification. The algorithm chain provides sensitive domain assignments with the highest possible specificity. Secondly, I present a tool enabling large-scale visualization of presences and absences of proteins in hierarchically clustered genomes. This tool visualizes multi-layer information of any kind of genome-linked data with a special focus on domain architectures, enabling identification of coevolving domains/proteins, which can eventually help in identifying functionally interacting proteins. And finally, I propose an approach for distinguishing between benign and damaging missense mutations in a human disease by establishing the precise evolutionary history of the associated gene. This part introduces new criteria on how to determine functional orthologs via phylogenetic analysis. All three parts use comparative genomics and/or sequence analyses. Taken together, this study addresses important problems in protein bioinformatics and as a whole it can be utilized to describe proteins by their domains, coevolving partners and functionally important residues

    Primary orthologs from local sequence context

    Get PDF
    BackgroundThe evolutionary history of genes serves as a cornerstone of contemporary biology. Most conserved sequences in mammalian genomes don\u27t code for proteins, yielding a need to infer evolutionary history of sequences irrespective of what kind of functional element they may encode. Thus, sequence-, as opposed to gene-, centric modes of inferring paths of sequence evolution are increasingly relevant. Customarily, homologous sequences derived from the same direct ancestor, whose ancestral position in two genomes is usually conserved, are termed "primary" (or "positional") orthologs. Methods based solely on similarity don\u27t reliably distinguish primary orthologs from other homologs; for this, genomic context is often essential. Context-dependent identification of orthologs traditionally relies on genomic context over length scales characteristic of conserved gene order or whole-genome sequence alignment, and can be computationally intensive. ResultsWe demonstrate that short-range sequence context-as short as a single "maximal" match- distinguishes primary orthologs from other homologs across whole genomes. On mammalian whole genomes not preprocessed by repeat-masker, potential orthologs are extracted by genome intersection as "non-nested maximal matches:" maximal matches that are not nested into other maximal matches. It emerges that on both nucleotide and gene scales, non-nested maximal matches recapitulate primary or positional orthologs with high precision and high recall, while the corresponding computation consumes less than one thirtieth of the computation time required by commonly applied whole-genome alignment methods. In regions of genomes that would be masked by repeat-masker, non-nested maximal matches recover orthologs that are inaccessible to Lastz net alignment, for which repeat-masking is a prerequisite. mmRBHs, reciprocal best hits of genes containing non-nested maximal matches, yield novel putative orthologs, e.g. around 1000 pairs of genes for human-chimpanzee. ConclusionsWe describe an intersection-based method that requires neither repeat-masking nor alignment to infer evolutionary history of sequences based on short-range genomic sequence context. Ortholog identification based on non-nested maximal matches is parameter-free, and less computationally intensive than many alignment-based methods. It is especially suitable for genome-wide identification of orthologs, and may be applicable to unassembled genomes. We are agnostic as to the reasons for its effectiveness, which may reflect local variation of mean mutation rate
    corecore