1,391 research outputs found

    Accurate delay distribution for IEEE 802.11 DCF

    Full text link

    Supporting Service Differentiation with Enhancements of the IEEE 802.11 MAC Protocol: Models and Analysis

    Get PDF
    As one of the fastest growing wireless access technologies, Wireless LANs must evolve to support adequate degrees of service differentiation. Unfortunately, current WLAN standards like IEEE 802.11 Distributed Coordination Function (DCF) lack this ability. Work is in progress to define an enhanced version capable of supporting QoS for multimedia traffic at the MAC layer. In this paper, we aim at gaining insight into three mechanisms to differentiate among traffic categories, i.e., differentiating the minimum contention window size, the Inter-Frame Spacing (IFS) and the length of the packet payload according to the priority of different traffic categories. We propose an analysis model to compute the throughput and packet transmission delays. In additions, we derive approximations to get simpler but more meaningful relationships among different parameters. Comparisons with discrete-event simulation results show that a very good accuracy of performance evaluation can be achieved by using the proposed analysis model

    Modeling, Analysis and Impact of a Long Transitory Phase in Random Access Protocols

    Get PDF
    In random access protocols, the service rate depends on the number of stations with a packet buffered for transmission. We demonstrate via numerical analysis that this state-dependent rate along with the consideration of Poisson traffic and infinite (or large enough to be considered infinite) buffer size may cause a high-throughput and extremely long (in the order of hours) transitory phase when traffic arrivals are right above the stability limit. We also perform an experimental evaluation to provide further insight into the characterisation of this transitory phase of the network by analysing statistical properties of its duration. The identification of the presence as well as the characterisation of this behaviour is crucial to avoid misprediction, which has a significant potential impact on network performance and optimisation. Furthermore, we discuss practical implications of this finding and propose a distributed and low-complexity mechanism to keep the network operating in the high-throughput phase.Comment: 13 pages, 10 figures, Submitted to IEEE/ACM Transactions on Networkin
    • …
    corecore