1,706 research outputs found

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    On the Role of Ill-conditioning: Biharmonic Eigenvalue Problem and Multigrid Algorithms

    Get PDF
    Very fine discretizations of differential operators often lead to large, sparse matrices A, where the condition number of A is large. Such ill-conditioning has well known effects on both solving linear systems and eigenvalue computations, and, in general, computing solutions with relative accuracy independent of the condition number is highly desirable. This dissertation is divided into two parts. In the first part, we discuss a method of preconditioning, developed by Ye, which allows solutions of Ax=b to be computed accurately. This, in turn, allows for accurate eigenvalue computations. We then use this method to develop discretizations that yield accurate computations of the smallest eigenvalue of the biharmonic operator across several domains. Numerical results from the various schemes are provided to demonstrate the performance of the methods. In the second part we address the role of the condition number of A in the context of multigrid algorithms. Under various assumptions, we use rigorous Fourier analysis on 2- and 3-grid iteration operators to analyze round off errors in floating point arithmetic. For better understanding of general results, we provide detailed bounds for a particular algorithm applied to the 1-dimensional Poisson equation. Numerical results are provided and compared with those obtained by the schemes discussed in part 1
    • …
    corecore