10,629 research outputs found

    Distance-based Protein Folding Powered by Deep Learning

    Full text link
    Contact-assisted protein folding has made very good progress, but two challenges remain. One is accurate contact prediction for proteins lack of many sequence homologs and the other is that time-consuming folding simulation is often needed to predict good 3D models from predicted contacts. We show that protein distance matrix can be predicted well by deep learning and then directly used to construct 3D models without folding simulation at all. Using distance geometry to construct 3D models from our predicted distance matrices, we successfully folded 21 of the 37 CASP12 hard targets with a median family size of 58 effective sequence homologs within 4 hours on a Linux computer of 20 CPUs. In contrast, contacts predicted by direct coupling analysis (DCA) cannot fold any of them in the absence of folding simulation and the best CASP12 group folded 11 of them by integrating predicted contacts into complex, fragment-based folding simulation. The rigorous experimental validation on 15 CASP13 targets show that among the 3 hardest targets of new fold our distance-based folding servers successfully folded 2 large ones with <150 sequence homologs while the other servers failed on all three, and that our ab initio folding server also predicted the best, high-quality 3D model for a large homology modeling target. Further experimental validation in CAMEO shows that our ab initio folding server predicted correct fold for a membrane protein of new fold with 200 residues and 229 sequence homologs while all the other servers failed. These results imply that deep learning offers an efficient and accurate solution for ab initio folding on a personal computer

    TopologyNet: Topology based deep convolutional neural networks for biomolecular property predictions

    Full text link
    Although deep learning approaches have had tremendous success in image, video and audio processing, computer vision, and speech recognition, their applications to three-dimensional (3D) biomolecular structural data sets have been hindered by the entangled geometric complexity and biological complexity. We introduce topology, i.e., element specific persistent homology (ESPH), to untangle geometric complexity and biological complexity. ESPH represents 3D complex geometry by one-dimensional (1D) topological invariants and retains crucial biological information via a multichannel image representation. It is able to reveal hidden structure-function relationships in biomolecules. We further integrate ESPH and convolutional neural networks to construct a multichannel topological neural network (TopologyNet) for the predictions of protein-ligand binding affinities and protein stability changes upon mutation. To overcome the limitations to deep learning arising from small and noisy training sets, we present a multitask topological convolutional neural network (MT-TCNN). We demonstrate that the present TopologyNet architectures outperform other state-of-the-art methods in the predictions of protein-ligand binding affinities, globular protein mutation impacts, and membrane protein mutation impacts.Comment: 20 pages, 8 figures, 5 table

    Deep learning extends de novo protein modelling coverage of genomes using iteratively predicted structural constraints

    Get PDF
    The inapplicability of amino acid covariation methods to small protein families has limited their use for structural annotation of whole genomes. Recently, deep learning has shown promise in allowing accurate residue-residue contact prediction even for shallow sequence alignments. Here we introduce DMPfold, which uses deep learning to predict inter-atomic distance bounds, the main chain hydrogen bond network, and torsion angles, which it uses to build models in an iterative fashion. DMPfold produces more accurate models than two popular methods for a test set of CASP12 domains, and works just as well for transmembrane proteins. Applied to all Pfam domains without known structures, confident models for 25% of these so-called dark families were produced in under a week on a small 200 core cluster. DMPfold provides models for 16% of human proteome UniProt entries without structures, generates accurate models with fewer than 100 sequences in some cases, and is freely available.Comment: JGG and SMK contributed equally to the wor

    Structural Property Prediction

    Full text link
    While many good textbooks are available on Protein Structure, Molecular Simulations, Thermodynamics and Bioinformatics methods in general, there is no good introductory level book for the field of Structural Bioinformatics. This book aims to give an introduction into Structural Bioinformatics, which is where the previous topics meet to explore three dimensional protein structures through computational analysis. We provide an overview of existing computational techniques, to validate, simulate, predict and analyse protein structures. More importantly, it will aim to provide practical knowledge about how and when to use such techniques. We will consider proteins from three major vantage points: Protein structure quantification, Protein structure prediction, and Protein simulation & dynamics. Some structural properties of proteins that are closely linked to their function may be easier (or much faster) to predict from sequence than the complete tertiary structure; for example, secondary structure, surface accessibility, flexibility, disorder, interface regions or hydrophobic patches. Serving as building blocks for the native protein fold, these structural properties also contain important structural and functional information not apparent from the amino acid sequence. Here, we will first give an introduction into the application of machine learning for structural property prediction, and explain the concepts of cross-validation and benchmarking. Next, we will review various methods that incorporate knowledge of these concepts to predict those structural properties, such as secondary structure, surface accessibility, disorder and flexibility, and aggregation.Comment: editorial responsability: Juami H. M. van Gils, K. Anton Feenstra, Sanne Abeln. This chapter is part of the book "Introduction to Protein Structural Bioinformatics". The Preface arXiv:1801.09442 contains links to all the (published) chapter

    Highly Accurate Fragment Library for Protein Fold Recognition

    Get PDF
    Proteins play a crucial role in living organisms as they perform many vital tasks in every living cell. Knowledge of protein folding has a deep impact on understanding the heterogeneity and molecular functions of proteins. Such information leads to crucial advances in drug design and disease understanding. Fold recognition is a key step in the protein structure discovery process, especially when traditional computational methods fail to yield convincing structural homologies. In this work, we present a new protein fold recognition approach using machine learning and data mining methodologies. First, we identify a protein structural fragment library (Frag-K) composed of a set of backbone fragments ranging from 4 to 20 residues as the structural “keywords” that can effectively distinguish between major protein folds. We firstly apply randomized spectral clustering and random forest algorithms to construct representative and sensitive protein fragment libraries from a large-scale of high-quality, non-homologous protein structures available in PDB. We analyze the impacts of clustering cut-offs on the performance of the fragment libraries. Then, the Frag-K fragments are employed as structural features to classify protein structures in major protein folds defined by SCOP (Structural Classification of Proteins). Our results show that a structural dictionary with ~400 4- to 20-residue Frag-K fragments is capable of classifying major SCOP folds with high accuracy. Then, based on Frag-k, we design a novel deep learning architecture, so-called DeepFrag-k, which identifies fold discriminative features to improve the accuracy of protein fold recognition. DeepFrag-k is composed of two stages: the first stage employs a multimodal Deep Belief Network (DBN) to predict the potential structural fragments given a sequence, represented as a fragment vector, and then the second stage uses a deep convolution neural network (CNN) to classify the fragment vectors into the corresponding folds. Our results show that DeepFrag-k yields 92.98% accuracy in predicting the top-100 most popular fragments, which can be used to generate discriminative fragment feature vectors to improve protein fold recognition
    corecore