7,807 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    White matter differences between healthy young ApoE4 carriers and non-carriers identified with tractography and support vector machines.

    Get PDF
    The apolipoprotein E4 (ApoE4) is an established risk factor for Alzheimer's disease (AD). Previous work has shown that this allele is associated with functional (fMRI) changes as well structural grey matter (GM) changes in healthy young, middle-aged and older subjects. Here, we assess the diffusion characteristics and the white matter (WM) tracts of healthy young (20-38 years) ApoE4 carriers and non-carriers. No significant differences in diffusion indices were found between young carriers (ApoE4+) and non-carriers (ApoE4-). There were also no significant differences between the groups in terms of normalised GM or WM volume. A feature selection algorithm (ReliefF) was used to select the most salient voxels from the diffusion data for subsequent classification with support vector machines (SVMs). SVMs were capable of classifying ApoE4 carrier and non-carrier groups with an extremely high level of accuracy. The top 500 voxels selected by ReliefF were then used as seeds for tractography which identified a WM network that included regions of the parietal lobe, the cingulum bundle and the dorsolateral frontal lobe. There was a non-significant decrease in volume of this WM network in the ApoE4 carrier group. Our results indicate that there are subtle WM differences between healthy young ApoE4 carriers and non-carriers and that the WM network identified may be particularly vulnerable to further degeneration in ApoE4 carriers as they enter middle and old age

    White matter and task-switching in young adults: A Diffusion Tensor Imaging study

    Get PDF
    The capacity to flexibly switch between different task rules has been previously associated with distributed fronto-parietal networks, predominantly in the left hemisphere for phasic switching sub-processes, and in the right hemisphere for more tonic aspects of task-switching, such as rule maintenance and management. It is thus likely that the white matter (WM) connectivity between these regions is critical in sustaining the flexibility required by task-switching. This study examined the relationship between WM microstructure in young adults and task-switching performance in different paradigms: classical shape-color, spatial and grammatical tasks. The main results showed an association between WM integrity in anterior portions of the corpus callosum (genu and body) and a sustained measure of task-switching performance. In particular, a higher fractional anisotropy and a lower radial diffusivity in these WM regions were associated with smaller mixing costs both in the spatial task-switching paradigm and in the shape-color one, as confirmed by a conjunction analysis. No association was found with behavioral measures obtained in the grammatical task-switching paradigm. The switch costs, a measure of phasic switching processes, were not correlated with WM microstructure in any task. This study shows that a more efficient inter-hemispheric connectivity within the frontal lobes favors sustained task-switching processes, especially with task contexts embedding non-verbal components

    Alterations in white matter microstructure in neurofibromatosis-1.

    Get PDF
    Neurofibromatosis (NF1) represents the most common single gene cause of learning disabilities. NF1 patients have impairments in frontal lobe based cognitive functions such as attention, working memory, and inhibition. Due to its well-characterized genetic etiology, investigations of NF1 may shed light on neural mechanisms underlying such difficulties in the general population or other patient groups. Prior neuroimaging findings indicate global brain volume increases, consistent with neural over-proliferation. However, little is known about alterations in white matter microstructure in NF1. We performed diffusion tensor imaging (DTI) analyses using tract-based spatial statistics (TBSS) in 14 young adult NF1 patients and 12 healthy controls. We also examined brain volumetric measures in the same subjects. Consistent with prior studies, we found significantly increased overall gray and white matter volume in NF1 patients. Relative to healthy controls, NF1 patients showed widespread reductions in white matter integrity across the entire brain as reflected by decreased fractional anisotropy (FA) and significantly increased absolute diffusion (ADC). When radial and axial diffusion were examined we found pronounced differences in radial diffusion in NF1 patients, indicative of either decreased myelination or increased space between axons. Secondary analyses revealed that FA and radial diffusion effects were of greatest magnitude in the frontal lobe. Such alterations of white matter tracts connecting frontal regions could contribute to the observed cognitive deficits. Furthermore, although the cellular basis of these white matter microstructural alterations remains to be determined, our findings of disproportionately increased radial diffusion against a background of increased white matter volume suggest the novel hypothesis that one potential alteration contributing to increased cortical white matter in NF1 may be looser packing of axons, with or without myelination changes. Further, this indicates that axial and radial diffusivity can uniquely contribute as markers of NF1-associated brain pathology in conjunction with the typically investigated measures

    Image Processing Algorithms for Detection of Anomalies in Orthopedic Surgery Implants

    Get PDF
    Orthopedic implant procedures for hip implants are performed on 300,000 patients annually in the United States, with 22.3 million procedures worldwide. While most such operations are successfully performed to relieve pain and restore joint function for the duration of the patient\u27s life, advances in medicine have enabled patients to outlive the life of their implant, increasing the likelihood of implant failure. There is significant advantage to the patient, the surgeon, and the medical community in early detection of implant failures.The research work presented in this thesis demonstrates a non-invasive digital image processing technique for the automated detection of specific arthroplasty failures before requiring revision surgery. This thesis studies hip implant loosening as the primary cause of failure. A combination of digital image segmentation, representation and numerical description is employed and validated on 2-D X-ray images of hip implant phantoms to detect 3-D rotations of the implant, with the support of radial basis function neural networks to accomplish this task. A successful clinical implementation of the methods developed in this thesis can eliminate the need for revision surgery and prolong the life of the orthopedic implant

    A Real Time Employee Attendance Monitoring System using ANN

    Get PDF
    Face recognition refers to the technology that examines and contrasts a person's face characteristics to recognise or verify their identity. Recently, this technology has drawn a lot of attention due to the potential uses it may have in security, marketing, and law enforcement. Face recognition involves studying a picture or video of a person's face to identify features like the space between their eyes, the contour of their nose, and the curve of their mouth. The person's identity is then established or verified by comparing these characteristics to a database of previously saved pictures. A series of techniques called facial recognition algorithms are used to identify and authenticate persons based on the features of their faces. These algorithms compare a person's facial attributes to those in a database of recognised faces by looking at things like the shape of their face, the distance between their eyes, and other distinctive facial features. There are many different types of face recognition algorithms, including geometric-based algorithms, appearance-based algorithms, and hybrid algorithms that combine both approaches. Geometric-based algorithms employ the geometry of face traits to identify and validate people, while appearance-based algorithms use image processing techniques to compare the patterns and textures of facial features. Recent advances in deep learning have significantly improved the accuracy of facial recognition algorithms. Artificial Neural Network (ANN) has shown to be highly effective and have been used in a range of applications, including mobile devices, security, and surveillance. Face recognition algorithms provide advantages, but there are also moral dilemmas with regard to its application, such as potential biases and privacy difficulties. As technology advances, it is imperative to address these problems and ensure that face recognition algorithms are used ethically and responsibly
    • …
    corecore