881 research outputs found

    Hardware emulation of wireless communication fading channels

    Get PDF
    This dissertation investigates several main challenges to implementing hardware-based wireless fading channel emulators with emphasis on incorporating accurate correlation properties. Multiple-input multiple-output (MIMO) fading channels are usually triply-selective with three types of correlation: temporal correlation, inter-tap correlation, and spatial correlation. The proposed emulators implement the triply-selective fading Channel Impulse Response (CIR) by incorporating the three types of correlation into multiple uncorrelated frequency-flat Rayleigh fading waveforms while meeting real-time requirements for high data-rate, large-sized MIMO, and/or long CIR channels. Specifically, mixed parallel-serial computational structures are implemented for Kronecker products of the correlation matrices, which makes the best tradeoff between computational speed and hardware usage. Five practical fading channel examples are implemented for RF or underwater acoustic MIMO applications. The performance of the hardware emulators are verified with an Altera Field-Programmable Gate Array (FPGA) platform and the results match the software simulators in terms of statistical and correlation properties. The dissertation also contributes to the development of a 2-by-2 MIMO transceiver testbench that is used to measure real-world fading channels. Intensive channel measurements are performed for indoor fixed mobile-to-mobile channels and the estimated CIRs demonstrate the triply-selective correlation properties --Abstract, page iv

    Two new sum-of-sinusoids-based methods for the efficient generation of multiple uncorrelated rayleigh fading waveforms

    Get PDF
    This paper deals with the design of a set of multiple uncorrelated Rayleigh fading waveforms. The Rayleigh fading waveforms are mutually uncorrelated, but each waveform is correlated in time. The waveforms are generated by using the deterministic sum-of-sinusoids (SOS) channel modeling principle. Two new closed-form solutions are presented for the computation of the model parameters. Analytical and numerical results show that the resulting deterministic SOS-based channel simulator fulfills all main requirements imposed by the reference model with given correlation properties derived under two-dimensional isotropic scattering conditions. The proposed methods are useful for the design of simulation models for diversity-combined Rayleigh fading channels, relay fading channels, frequencyselective channels, and multiple-input multiple-output (MIMO) channels. © 2006 IEEE

    Frame delay and loss analysis for video transmission over time-correlated 802.11A/G channels

    Get PDF

    A Novel Simulator of Nonstationary Random MIMO Channels in Rayleigh Fading Scenarios

    Get PDF
    For simulations of nonstationary multiple-input multiple-output (MIMO) Rayleigh fading channels in time-variant scattering environments, a novel channel simulator is proposed based on the superposition of chirp signals. This new method has the advantages of low complexity and implementation simplicity as the sum of sinusoids (SOS) method. In order to reproduce realistic time varying statistics for dynamic channels, an efficient parameter computation method is also proposed for updating the frequency parameters of employed chirp signals. Simulation results indicate that the proposed simulator is effective in generating nonstationary MIMO channels with close approximation of the time-variant statistical characteristics in accordance with the expected theoretical counterparts

    A Statistical Simulation Model for Mobile Radio Fading Channels

    Get PDF
    Recently, a Clarke\u27s model-based simulator was proposed for Rayleigh fading channels. However, that model, as shown in this paper, may encounter statistic deficiency. Therefore, an improved model is presented to remove the statistic deficiency. Furthermore, a new simulation model is proposed for Rician fading channels. This Rician fading simulator with finite number of sinusoids plus a zero-mean stochastic sinusoid as the specular (line-of-sight) component is different from all the existing Rician fading simulators, which have non-zero mean deterministic specular component. The statistical properties of the proposed Rayleigh and Rician fading channel models are analyzed in detail, which shows that these statistics either exactly match or quickly converge to the theoretically desired ones. Additionally and importantly, the probability density function of the Rician fading phase is not only independent from time but also uniformly distributed, which is fundamentally different from that of all the existing Rician fading models. The statistical properties of the new simulators are evaluated by numerical results, finding good agreement in all cases

    Stochastic Modeling and Simulation of Frequency-Correlated Wideband Fading Channels

    Full text link
    • …
    corecore