622 research outputs found

    Cross-layer Soft Error Analysis and Mitigation at Nanoscale Technologies

    Get PDF
    This thesis addresses the challenge of soft error modeling and mitigation in nansoscale technology nodes and pushes the state-of-the-art forward by proposing novel modeling, analyze and mitigation techniques. The proposed soft error sensitivity analysis platform accurately models both error generation and propagation starting from a technology dependent device level simulations all the way to workload dependent application level analysis

    Improved Fault Tolerant SRAM Cell Design & Layout in 130nm Technology

    Get PDF
    Technology scaling of CMOS devices has made the integrated circuits vulnerable to single event radiation effects. Scaling of CMOS Static RAM (SRAM) has led to denser packing architectures by reducing the size and spacing of diffusion nodes. However, this trend has led to the increase in charge collection and sharing effects between devices during an ion strike, making the circuit even more vulnerable to a specific single event effect called the single event multiple-node upset (SEMU). In nanometer technologies, SEMU can easily disrupt the data stored in the memory and can be more hazardous than a single event single-node upset. During the last decade, most of the research efforts were mainly focused on improving the single event single-node upset tolerance of SRAM cells by using novel circuit techniques, but recent studies relating to angular radiation sensitivity has revealed the importance of SEMU and Multi Bit Upset (MBU) tolerance for SRAM cells. The research focuses on improving SEMU tolerance of CMOS SRAM cells by using novel circuit and layout level techniques. A novel SRAM cell circuit & layout technique is proposed to improve the SEMU tolerance of 6T SRAM cells with decreasing feature size, making it an ideal candidate for future technologies. The layout is based on strategically positioning diffusion nodes in such a way as to provide charge cancellation among nodes during SEMU radiation strikes, instead of charge build-up. The new design & layout technique can improve the SEMU tolerance levels by up to 20 times without sacrificing on area overhead and hence is suitable for high density SRAM designs in commercial applications. Finally, laser testing of SRAM based configuration memory of a Xilinx Virtex-5 FPGA is performed to analyze the behavior of SRAM based systems towards radiation strikes

    A Survey of Fault-Injection Methodologies for Soft Error Rate Modeling in Systems-on-Chips

    Get PDF
    The development of process technology has increased system performance, but the system failure probability has also significantly increased. It is important to consider the system reliability in addition to the cost, performance, and power consumption. In this paper, we describe the types of faults that occur in a system and where these faults originate. Then, fault-injection techniques, which are used to characterize the fault rate of a system-on-chip (SoC), are investigated to provide a guideline to SoC designers for the realization of resilient SoCs

    Memory built-in self-repair and correction for improving yield: a review

    Get PDF
    Nanometer memories are highly prone to defects due to dense structure, necessitating memory built-in self-repair as a must-have feature to improve yield. Today’s system-on-chips contain memories occupying an area as high as 90% of the chip area. Shrinking technology uses stricter design rules for memories, making them more prone to manufacturing defects. Further, using 3D-stacked memories makes the system vulnerable to newer defects such as those coming from through-silicon-vias (TSV) and micro bumps. The increased memory size is also resulting in an increase in soft errors during system operation. Multiple memory repair techniques based on redundancy and correction codes have been presented to recover from such defects and prevent system failures. This paper reviews recently published memory repair methodologies, including various built-in self-repair (BISR) architectures, repair analysis algorithms, in-system repair, and soft repair handling using error correcting codes (ECC). It provides a classification of these techniques based on method and usage. Finally, it reviews evaluation methods used to determine the effectiveness of the repair algorithms. The paper aims to present a survey of these methodologies and prepare a platform for developing repair methods for upcoming-generation memories

    Semiconductor Memory Applications in Radiation Environment, Hardware Security and Machine Learning System

    Get PDF
    abstract: Semiconductor memory is a key component of the computing systems. Beyond the conventional memory and data storage applications, in this dissertation, both mainstream and eNVM memory technologies are explored for radiation environment, hardware security system and machine learning applications. In the radiation environment, e.g. aerospace, the memory devices face different energetic particles. The strike of these energetic particles can generate electron-hole pairs (directly or indirectly) as they pass through the semiconductor device, resulting in photo-induced current, and may change the memory state. First, the trend of radiation effects of the mainstream memory technologies with technology node scaling is reviewed. Then, single event effects of the oxide based resistive switching random memory (RRAM), one of eNVM technologies, is investigated from the circuit-level to the system level. Physical Unclonable Function (PUF) has been widely investigated as a promising hardware security primitive, which employs the inherent randomness in a physical system (e.g. the intrinsic semiconductor manufacturing variability). In the dissertation, two RRAM-based PUF implementations are proposed for cryptographic key generation (weak PUF) and device authentication (strong PUF), respectively. The performance of the RRAM PUFs are evaluated with experiment and simulation. The impact of non-ideal circuit effects on the performance of the PUFs is also investigated and optimization strategies are proposed to solve the non-ideal effects. Besides, the security resistance against modeling and machine learning attacks is analyzed as well. Deep neural networks (DNNs) have shown remarkable improvements in various intelligent applications such as image classification, speech classification and object localization and detection. Increasing efforts have been devoted to develop hardware accelerators. In this dissertation, two types of compute-in-memory (CIM) based hardware accelerator designs with SRAM and eNVM technologies are proposed for two binary neural networks, i.e. hybrid BNN (HBNN) and XNOR-BNN, respectively, which are explored for the hardware resource-limited platforms, e.g. edge devices.. These designs feature with high the throughput, scalability, low latency and high energy efficiency. Finally, we have successfully taped-out and validated the proposed designs with SRAM technology in TSMC 65 nm. Overall, this dissertation paves the paths for memory technologies’ new applications towards the secure and energy-efficient artificial intelligence system.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Cross layer reliability estimation for digital systems

    Get PDF
    Forthcoming manufacturing technologies hold the promise to increase multifuctional computing systems performance and functionality thanks to a remarkable growth of the device integration density. Despite the benefits introduced by this technology improvements, reliability is becoming a key challenge for the semiconductor industry. With transistor size reaching the atomic dimensions, vulnerability to unavoidable fluctuations in the manufacturing process and environmental stress rise dramatically. Failing to meet a reliability requirement may add excessive re-design cost to recover and may have severe consequences on the success of a product. %Worst-case design with large margins to guarantee reliable operation has been employed for long time. However, it is reaching a limit that makes it economically unsustainable due to its performance, area, and power cost. One of the open challenges for future technologies is building ``dependable'' systems on top of unreliable components, which will degrade and even fail during normal lifetime of the chip. Conventional design techniques are highly inefficient. They expend significant amount of energy to tolerate the device unpredictability by adding safety margins to a circuit's operating voltage, clock frequency or charge stored per bit. Unfortunately, the additional cost introduced to compensate unreliability are rapidly becoming unacceptable in today's environment where power consumption is often the limiting factor for integrated circuit performance, and energy efficiency is a top concern. Attention should be payed to tailor techniques to improve the reliability of a system on the basis of its requirements, ending up with cost-effective solutions favoring the success of the product on the market. Cross-layer reliability is one of the most promising approaches to achieve this goal. Cross-layer reliability techniques take into account the interactions between the layers composing a complex system (i.e., technology, hardware and software layers) to implement efficient cross-layer fault mitigation mechanisms. Fault tolerance mechanism are carefully implemented at different layers starting from the technology up to the software layer to carefully optimize the system by exploiting the inner capability of each layer to mask lower level faults. For this purpose, cross-layer reliability design techniques need to be complemented with cross-layer reliability evaluation tools, able to precisely assess the reliability level of a selected design early in the design cycle. Accurate and early reliability estimates would enable the exploration of the system design space and the optimization of multiple constraints such as performance, power consumption, cost and reliability. This Ph.D. thesis is devoted to the development of new methodologies and tools to evaluate and optimize the reliability of complex digital systems during the early design stages. More specifically, techniques addressing hardware accelerators (i.e., FPGAs and GPUs), microprocessors and full systems are discussed. All developed methodologies are presented in conjunction with their application to real-world use cases belonging to different computational domains
    • …
    corecore