13,489 research outputs found

    Integrating spatial and temporal approaches for explaining bicycle crashes in high-risk areas in Antwerp (Belgium)

    Get PDF
    The majority of bicycle crash studies aim at determining risk factors and estimating crash risks by employing statistics. Accordingly, the goal of this paper is to evaluate bicycle-motor vehicle crashes by using spatial and temporal approaches to statistical data. The spatial approach (a weighted kernel density estimation approach) preliminarily estimates crash risks at the macro level, thereby avoiding the expensive work of collecting traffic counts; meanwhile, the temporal approach (negative binomial regression approach) focuses on crash data that occurred on urban arterials and includes traffic exposure at the micro level. The crash risk and risk factors of arterial roads associated with bicycle facilities and road environments were assessed using a database built from field surveys and five government agencies. This study analysed 4120 geocoded bicycle crashes in the city of Antwerp (CA, Belgium). The data sets covered five years (2014 to 2018), including all bicycle-motorized vehicle (BMV) crashes from police reports. Urban arterials were highlighted as high-risk areas through the spatial approach. This was as expected given that, due to heavy traffic and limited road space, bicycle facilities on arterial roads face many design problems. Through spatial and temporal approaches, the environmental characteristics of bicycle crashes on arterial roads were analysed at the micro level. Finally, this paper provides an insight that can be used by both the geography and transport fields to improve cycling safety on urban arterial roads

    Objectives, stimulus and feedback in signal control of road traffic

    Get PDF
    This article identifies the prospective role of a range of intelligent transport systems technologies for the signal control of road traffic. We discuss signal control within the context of traffic management and control in urban road networks and then present a control-theoretic formulation for it that distinguishes the various roles of detector data, objectives of optimization, and control feedback. By reference to this, we discuss the importance of different kinds of variability in traffic flows and review the state of knowledge in respect of control in the presence of different combinations of them. In light of this formulation and review, we identify a range of important possibilities for contributions to traffic management and control through traffic measurement and detection technology, and contemporary flexible optimization techniques that use various kinds of automated learning
    • …
    corecore