461 research outputs found

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    Bootstrapping Real-world Deployment of Future Internet Architectures

    Full text link
    The past decade has seen many proposals for future Internet architectures. Most of these proposals require substantial changes to the current networking infrastructure and end-user devices, resulting in a failure to move from theory to real-world deployment. This paper describes one possible strategy for bootstrapping the initial deployment of future Internet architectures by focusing on providing high availability as an incentive for early adopters. Through large-scale simulation and real-world implementation, we show that with only a small number of adopting ISPs, customers can obtain high availability guarantees. We discuss design, implementation, and evaluation of an availability device that allows customers to bridge into the future Internet architecture without modifications to their existing infrastructure

    The Abandoned Side of the Internet: Hijacking Internet Resources When Domain Names Expire

    Full text link
    The vulnerability of the Internet has been demonstrated by prominent IP prefix hijacking events. Major outages such as the China Telecom incident in 2010 stimulate speculations about malicious intentions behind such anomalies. Surprisingly, almost all discussions in the current literature assume that hijacking incidents are enabled by the lack of security mechanisms in the inter-domain routing protocol BGP. In this paper, we discuss an attacker model that accounts for the hijacking of network ownership information stored in Regional Internet Registry (RIR) databases. We show that such threats emerge from abandoned Internet resources (e.g., IP address blocks, AS numbers). When DNS names expire, attackers gain the opportunity to take resource ownership by re-registering domain names that are referenced by corresponding RIR database objects. We argue that this kind of attack is more attractive than conventional hijacking, since the attacker can act in full anonymity on behalf of a victim. Despite corresponding incidents have been observed in the past, current detection techniques are not qualified to deal with these attacks. We show that they are feasible with very little effort, and analyze the risk potential of abandoned Internet resources for the European service region: our findings reveal that currently 73 /24 IP prefixes and 7 ASes are vulnerable to be stealthily abused. We discuss countermeasures and outline research directions towards preventive solutions.Comment: Final version for TMA 201

    BGP Hijacking Classification

    Get PDF
    Recent reports show that BGP hijacking has increased substantially. BGP hijacking allows malicious ASes to obtain IP prefixes for spamming as well as intercepting or blackholing traffic. While systems to prevent hijacks are hard to deploy and require the cooperation of many other organizations, techniques to detect hijacks have been a popular area of study. In this paper, we classify detected hijack events in order to document BGP detectors output and understand the nature of reported events. We introduce four categories of BGP hijack: typos, prepending mistakes, origin changes, and forged AS paths. We leverage AS hegemony-a measure of dependency in AS relationship-to identify forged AS paths in a fast and efficient way. Besides, we utilize heuristic approaches to find common operators\u27 mistakes such as typos and AS prepending mistakes. The proposed approach classifies our collected ground truth into four categories with 95.71% accuracy. We characterize publicly reported alarms (e.g. BGPMon) with our trained classifier and find 4%, 1%, and 2% of typos, prepend mistakes, and BGP hijacking with a forged AS path, respectively

    Impact of prefix hijacking on payments of providers

    Full text link
    Abstract—Whereas prefix hijacking is usually examined from security perspectives, this paper looks at it from a novel economic angle. Our study stems from an observation that a transit AS (Autonomous System) has a financial interest in attracting extra traffic to the links with its customers. Based on real data about the actual hijacking incident in the Internet, we conduct simulations in the real AS-level Internet topology with synthetic demands for the hijacked traffic. Then, we measure traffic on all inter-AS links and compute the payments of all providers. The analysis of our results from technical, business, and legal viewpoints suggests that hijacking-based traffic attraction is a viable strategy that can create a fertile ground for tussles between providers. In particular, giant top-tier providers appear to have the strongest financial incentives to hijack popular prefixes and then deliver the intercepted traffic to the proper destinations. We also discuss directions for future research in the area of hijacking-based traffic attraction

    AS-TRUST: A Trust Characterization Scheme for Autonomous Systems in BGP

    Get PDF
    Border Gateway Protocol (BGP) works by frequently exchanging updates which, disseminate reachability information (RI) about IP prefixes (i.e., address blocks) between Autonomous Systems (ASes) on the Internet. The current operation of BGP implicitly trusts the ASes to disseminate valid—accurate, stable and routing policy compliant — RI. This assumption is problematic as demonstrated by the recent documented instances of invalid RI dissemination. This paper presents AS-TRUST, a scheme which comprehensively characterizes the trustworthiness of ASes, with respect to disseminating valid RI. AS-TRUST quantifies trust using the notion of reputation. To compute reputation, AS-TRUST evaluates the past RI received for validity, based on a set of well-defined properties. It then classifies the resulting observations into multiple types of feedback. The feedback is used by a reputation function to compute a probabilistic view of AS trustworthiness. The contributions of the paper are: (1) a comprehensive trust characterization of ASes; (2) a set of well-defined properties for evaluating the validity of RI provided by ASes; and (3) a novel and theoretically sound reputation computation mechanism. Our implementation of AS-TRUST scheme using publicly available BGP traces demonstrates: the number of ASes involved in violating the BGP operational trust assumption is significant, dissemination of invalid RI is consistently present, and the proposed reputation mechanism is sensitive enough to capture even rare instances of an AS’ deviation from trustworthy behavior
    • …
    corecore