240 research outputs found

    NeBula: TEAM CoSTAR’s robotic autonomy solution that won phase II of DARPA subterranean challenge

    Get PDF
    This paper presents and discusses algorithms, hardware, and software architecture developed by the TEAM CoSTAR (Collaborative SubTerranean Autonomous Robots), competing in the DARPA Subterranean Challenge. Specifically, it presents the techniques utilized within the Tunnel (2019) and Urban (2020) competitions, where CoSTAR achieved second and first place, respectively. We also discuss CoSTAR’s demonstrations in Martian-analog surface and subsurface (lava tubes) exploration. The paper introduces our autonomy solution, referred to as NeBula (Networked Belief-aware Perceptual Autonomy). NeBula is an uncertainty-aware framework that aims at enabling resilient and modular autonomy solutions by performing reasoning and decision making in the belief space (space of probability distributions over the robot and world states). We discuss various components of the NeBula framework, including (i) geometric and semantic environment mapping, (ii) a multi-modal positioning system, (iii) traversability analysis and local planning, (iv) global motion planning and exploration behavior, (v) risk-aware mission planning, (vi) networking and decentralized reasoning, and (vii) learning-enabled adaptation. We discuss the performance of NeBula on several robot types (e.g., wheeled, legged, flying), in various environments. We discuss the specific results and lessons learned from fielding this solution in the challenging courses of the DARPA Subterranean Challenge competition.Peer ReviewedAgha, A., Otsu, K., Morrell, B., Fan, D. D., Thakker, R., Santamaria-Navarro, A., Kim, S.-K., Bouman, A., Lei, X., Edlund, J., Ginting, M. F., Ebadi, K., Anderson, M., Pailevanian, T., Terry, E., Wolf, M., Tagliabue, A., Vaquero, T. S., Palieri, M., Tepsuporn, S., Chang, Y., Kalantari, A., Chavez, F., Lopez, B., Funabiki, N., Miles, G., Touma, T., Buscicchio, A., Tordesillas, J., Alatur, N., Nash, J., Walsh, W., Jung, S., Lee, H., Kanellakis, C., Mayo, J., Harper, S., Kaufmann, M., Dixit, A., Correa, G. J., Lee, C., Gao, J., Merewether, G., Maldonado-Contreras, J., Salhotra, G., Da Silva, M. S., Ramtoula, B., Fakoorian, S., Hatteland, A., Kim, T., Bartlett, T., Stephens, A., Kim, L., Bergh, C., Heiden, E., Lew, T., Cauligi, A., Heywood, T., Kramer, A., Leopold, H. A., Melikyan, H., Choi, H. C., Daftry, S., Toupet, O., Wee, I., Thakur, A., Feras, M., Beltrame, G., Nikolakopoulos, G., Shim, D., Carlone, L., & Burdick, JPostprint (published version

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc

    Pedestrian localisation for indoor environments

    Get PDF
    Ubiquitous computing systems aim to assist us as we go about our daily lives, whilst at the same time fading into the background so that we do not notice their presence. To do this they need to be able to sense their surroundings and infer context about the state of the world. Location has proven to be an important source of contextual information for such systems. If a device can determine its own location then it can infer its surroundings and adapt accordingly. Of particular interest for many ubiquitous computing systems is the ability to track people in indoor environments. This interest has led to the development of many indoor location systems based on a range of technologies including infra-red light, ultrasound and radio. Unfortunately existing systems that achieve the kind of sub-metre accuracies desired by many location-aware applications require large amounts of infrastructure to be installed into the environment. This thesis investigates an alternative approach to indoor pedestrian tracking that uses on-body inertial sensors rather than relying on fixed infrastructure. It is demonstrated that general purpose inertial navigation algorithms are unsuitable for pedestrian tracking due to the rapid accumulation of errors in the tracked position. In practice it is necessary to frequently correct such algorithms using additional measurements or constraints. An extended Kalman filter is developed for this purpose and is applied to track pedestrians using foot-mounted inertial sensors. By detecting when the foot is stationary and applying zero velocity corrections a pedestrian’s relative movements can be tracked far more accurately than is possible using uncorrected inertial navigation. Having developed an effective means of calculating a pedestrian’s relative movements, a localisation filter is developed that combines relative movement measurements with environmental constraints derived from a map of the environment. By enforcing constraints such as impassable walls and floors the filter is able to narrow down the absolute position of a pedestrian as they move through an indoor environment. Once the user’s position has been uniquely determined the same filter is demonstrated to track the user’s absolute position to sub-metre accuracy. The localisation filter in its simplest form is computationally expensive. Furthermore symmetry exhibited by the environment may delay or prevent the filter from determining the user’s position. The final part of this thesis describes the concept of assisted localisation, in which additional measurements are used to solve both of these problems. The use of sparsely deployed WiFi access points is discussed in detail. The thesis concludes that inertial sensors can be used to track pedestrians in indoor environments. Such an approach is suited to cases in which it is impossible or impractical to install large amounts of fixed infrastructure into the environment in advance

    Motion tracking problems in Internet of Things (IoT) and wireless networking

    Get PDF
    The dissertation focuses on inferring various motion patterns of internet-of-things (IoT) devices, by leveraging inertial sensors embedded in these objects, as well as wireless signals emitted (or reflected) from them. For instance, we use a combination of GPS signals and inertial sensors on drones to precisely track its 3D orientation over time, ultimately improving safety against failures and crashes. In another application in sports analytics, we embed sensors and radios inside baseballs and cricket balls and compute their 3D trajectory and spin patterns, even when they move at extremely high speeds. In a third application for wireless networks, we explore the possibility of physically moving wireless infrastructure like Access Points and basestations on robots and drones for enhancing the network performance. While these are diverse applications in drones, sports analytics, and wireless networks, the common theme underlying the research is in the development of the core motion-related building blocks. Specifically, we emphasize the philosophy of "fusion of multi modal sensor data with application specific model” as the design principle for building the next generation of diverse IoT applications. To this end, we draw on theoretical techniques in wireless communication, signal processing, and statistics, but translate them to completely functional systems on real-world platforms
    • …
    corecore