9,659 research outputs found

    Methods of power line interference elimination in EMG signals

    Get PDF
    Electromyogram (EMG) recordings are often corrupted by the wide range of artifacts, which one of them is power line interference (PLI). The study focuses on some of the well-known signal processing approaches used to eliminate or attenuate PLI from EMG signal. The results are compared using signal-to-noise ratio (SNR), correlation coefficients and Bland-Altman analysis for each tested method: notch filter, adaptive noise canceller (ANC) and wavelet transform (WT). Thus, the power of the remaining noise and shape of the output signal are analysed. The results show that the ANC method gives the best output SNR and lowest shape distortion compared to the other methods.Web of Science40706

    Development of ultrasonic methods for hemodynamic measurements

    Get PDF
    A transcutanous method to measure instantaneous mean blood flow in peripheral arteries of the human body was defined. Transcutanous and implanted cuff ultrasound velocity measurements were evaluated, and the accuracies of velocity, flow, and diameter measurements were assessed for steady flow. Performance criteria were established for the pulsed Doppler velocity meter (PUDVM), and performance tests were conducted. Several improvements are suggested

    Fast non-recursive extraction of individual harmonics using artificial neural networks

    Get PDF
    A collaborative work between Northumbria University and University of Peradeniya (Sri Lanka). It presents a novel technique based on Artificial Neural Networks for fast extraction of individual harmonic components. The technique was tested on a real-time hardware platform and results obtained showed that it is significantly faster and less computationally complex than other techniques. The paper complements other publications by the author (see paper 1) on the important area of “Power Quality” of electric power networks. It involves the application of advanced techniques in artificial intelligence to solve power systems problems

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate

    Modeling and Efficient Cancellation of Nonlinear Self-Interference in MIMO Full-Duplex Transceivers

    Full text link
    This paper addresses the modeling and digital cancellation of self-interference in in-band full-duplex (FD) transceivers with multiple transmit and receive antennas. The self-interference modeling and the proposed nonlinear spatio-temporal digital canceller structure takes into account, by design, the effects of I/Q modulator imbalances and power amplifier (PA) nonlinearities with memory, in addition to the multipath self-interference propagation channels and the analog RF cancellation stage. The proposed solution is the first cancellation technique in the literature which can handle such a self-interference scenario. It is shown by comprehensive simulations with realistic RF component parameters and with two different PA models to clearly outperform the current state-of-the-art digital self-interference cancellers, and to clearly extend the usable transmit power range.Comment: 7 pages, 5 figures. To be presented in the 2014 International Workshop on Emerging Technologies for 5G Wireless Cellular Network

    Numerická analýza a simulace Rogowského cívky

    Get PDF
    This work illustrates an analysis of Rogowski coils for power applications, when operating under non ideal measurement conditions. The developed numerical model, validated by comparison with other methods and experiments, enables to investigate the effects of the geometrical and constructive parameters on the measurement behavior of the coil and we also study the behavior of Rogowski coils coupled with bar conductors under quasi-static conditions. Through a finite element (FEM) analysis, we estimate the current distribution across the bar and the flux linked by the transducer for various positions of the primary conductor and for various operating frequencies. Simulation and experimental results are reported in the text.Tato práce ilustruje analýzu rogowských cívek pro energetické aplikace při provozu v podmínkách bez ideálního měření. Vyvinutý numerický model, ověřený porovnáním s jinými metodami a experimenty, umožňuje zkoumat vliv geometrických a konstrukčních parametrů na chování měření cívky a také studujeme chování rogowských cívek spojených s tyčovými vodiči za kvazi-statických podmínek . Pomocí analýzy konečných prvků (FEM) odhadujeme rozložení proudu přes tyč a tok spojený snímačem pro různé polohy primárního vodiče a pro různé provozní frekvence. Simulační a experimentální výsledky jsou uvedeny v textu.410 - Katedra elektroenergetikydobř

    Active Filter for Single-Phase Power System

    Get PDF
    This study investigates the application and functionality of pure active power filters for current compensation in single-phase power systems. A small scale proof of concept design was constructed, using components which were studied, justified, and chosen based upon desired characteristics. The components were simulated on several different platforms to analyze their potential design feasibility. Based upon the study and simulation of this system the pure active power filter can be confirmed as a reputable form of harmonic filtering for single-phase power systems
    corecore