2,764 research outputs found

    Optimizing mixture properties of biodiesel production using genetic algorithm-based evolutionary support vector machine

    Get PDF
    Nowadays, biodiesel is used as one of the alternative renewable energy due to the increasing energy demand. However, optimum production of biodiesel still requires a huge number of expensive and time-consuming laboratory tests. To address the problem, this research develops a novel Genetic Algorithm-based Evolutionary Support Vector Machine (GA-ESIM). The GA-ESIM is an Artificial Intelligence (AI)-based tool that combines K-means Chaotic Genetic Algorithm (KCGA) and Evolutionary Support Vector Machine Inference Model (ESIM). The ESIM is utilized as a supervised learning technique to establish a highly accurate prediction model between the input--output of biodiesel mixture properties; and the KCGA is used to perform the simulation to obtain the optimum mixture properties based on the prediction model. A real biodiesel experimental data is provided to validate the GA-ESIM performance. Our simulation results demonstrate that the GA-ESIM establishes a prediction model with better accuracy than other AI-based tool and thus obtains the mixture properties with the biodiesel yield of 99.9%, higher than the best experimental data record, 97.4%

    Predictions on wheat crop yielding through fuzzy set theory and optimization techniques

    Get PDF
    Agricultural field’s production is commonly measured through the performance of the crops in terms of sow amount, climatology, and the type of crop, among other. Therefore, prediction on the performance of the crops canaid cultivators to make better informed decisions and help the agricultural field. This research work presents a prediction on wheat crop using the fuzzy set theory and the use of optimization techniques, in both; traditional methods and evolutionary meta-heuristics. The performance prediction in this research has its core on the following parameters: biomass, solar radiation, rainfall, and infield’s water extractions. Besides, the needed standards and the efficiency index (EFI) used come from already developed models; such standards include: the root-mean-square error (RMSE), the standard deviation, and the precision percentage. The applicationof a genetic algorithm on a Takagi-Sugeno system requires and highly precise prediction on wheat cropping;being, 0.005216 the error estimation, and 99,928 the performance percentage

    An investigation on the best-fit models for sugarcane biomass estimation by Linear Mixed-Effect Modelling on Unmanned Aerial Vehicle-Based Multispectral Images: a case study of Australia

    Get PDF
    Due to the worldwide population growth and the increasing needs for sugar-based products, accurate estimation of sugarcane biomass is critical to the precise monitoring of sugarcane growth. This research aims to find the imperative predictors correspond to the random and fixed effects to improve the accuracy of wet and dry sugarcane biomass estimations by integrating ground data and multi-temporal images from Unmanned Aerial Vehicles (UAVs). The multispectral images and biomass measurements were obtained at different sugarcane growth stages from 12 plots with three nitrogen fertilizer treatments. Individual spectral bands and different combinations of the plots, growth stages, and nitrogen fertilizer treatments were investigated to address the issue of selecting the correct fixed and random effects for the modelling. A model selection strategy was applied to obtain the optimum fixed effects and their proportional contribution. The results showed that utilizing Green, Blue, and Near Infrared spectral bands on models rather than all bands improved model performance for wet and dry biomass estimates. Additionally, the combination of plots and growth stages outperformed all the candidates of random effects. The proposed model outperformed the Multiple Linear Regression (MLR), Generalized Linear Model (GLM), and Generalized Additive Model (GAM) for wet and dry sugarcane biomass, with coefficients of determination (R2) of 0.93 and 0.97, and Root Mean Square Error (RMSE) of 12.78 and 2.57 t/ha, respectively. This study indicates that the proposed model can accurately estimate sugarcane biomasses without relying on nitrogen fertilizers or the saturation/senescence problem of Vegetation Indices (VIs) in mature growth stages

    Decision support system for the production of miscanthus and willow briquettes

    Get PDF
    The biomass is regarded as a part of renewable energy sources (RES), which can satisfy energy demands. Biomass obtained from plantations is characterized by low bulk density, which increases transport and storage costs. Briquetting is a technology that relies on pressing biomass with the aim of obtaining a denser product (briquettes). In the production of solid biofuels, the technological as well as material variables significantly influence the densification process, and as a result influence the end quality of briquette. This process progresses differently for different materials. Therefore, the optimal selection of process’ parameters is very difficult. It is necessary to use a decision support tool—decision support system (DSS). The purpose of the work was to develop a decision support system that would indicate the optimal parameters for conducting the process of producing Miscanthus and willow briquettes (pre-comminution, milling and briquetting), briquette parameters (durability and specific density) and total energy consumption based on process simulation. Artificial neural networks (ANNs) were used to describe the relationship between individual parameters of the briquette production process. DSS has the form of a web application and is opened from a web browser (it is possible to open it on various types of devices). The modular design allows the modification and expansion the application in the future

    Robust machine learning techniques for rice crop variables estimation using multiangular bistatic scattering coefficients

    Get PDF
    The present study is designed to explore the potential of bistatic scattering coefficients (σ °) and machine learning algorithms for the estimation of rice crop variables using ground-based multiangular, multitemporal, and dual-polarized bistatic scatterometer data. The bistatic scatterometer measurements are carried out at eight different growth stages of the rice crop in the angular range of incidence angle 20 deg to 70 deg for HH- and VV-polarization at 10-GHz frequency in the specular direction with an azimuthal angle (φ  =  0). Several field measurements are taken for the measurement of rice crop variables, such as vegetation water content, leaf area index, and plant height at its various growth stages. Machine learning algorithms—such as fuzzy inference system (FIS), support vector machine for regression (SVR), and generalized linear model (GLM)—are used to estimate the rice crop variables using bistatic scatterometer data. The linear regression analysis is carried out for the evaluation of the multiangular, multitemporal, and dual-polarized datasets for the selection of optimum incidence angle and polarization for accurate estimation of rice crop variables. The highest value of the coefficient of determination (R2) is found at 30-deg incidence angle for VV-polarization. The sensitivity of copolarized ratio of σ °   with the rice crop variable is also evaluated using linear regression analysis for the estimation of rice crop variables. The highest value of R^2 is found to be at 35-deg incidence angle between the copolarized ratio of σ °   and rice crop variables. The performance of SVR model is found superior in comparison to the FIS and GLM at VV-polarization and the copolarized ratio of σ °   for the estimation of rice crop variables. However, the copolarized ratio of σ °   is found superior to VV-polarized bistatic scatterometer data for the estimation of rice crop variables

    Experimental investigation and modelling of the heating value and elemental composition of biomass through artificial intelligence

    Get PDF
    Abstract: Knowledge advancement in artificial intelligence and blockchain technologies provides new potential predictive reliability for biomass energy value chain. However, for the prediction approach against experimental methodology, the prediction accuracy is expected to be high in order to develop a high fidelity and robust software which can serve as a tool in the decision making process. The global standards related to classification methods and energetic properties of biomass are still evolving given different observation and results which have been reported in the literature. Apart from these, there is a need for a holistic understanding of the effect of particle sizes and geospatial factors on the physicochemical properties of biomass to increase the uptake of bioenergy. Therefore, this research carried out an experimental investigation of some selected bioresources and also develops high-fidelity models built on artificial intelligence capability to accurately classify the biomass feedstocks, predict the main elemental composition (Carbon, Hydrogen, and Oxygen) on dry basis and the Heating value in (MJ/kg) of biomass...Ph.D. (Mechanical Engineering Science
    corecore