14,511 research outputs found

    Bayes Merging of Multiple Vocabularies for Scalable Image Retrieval

    Full text link
    The Bag-of-Words (BoW) representation is well applied to recent state-of-the-art image retrieval works. Typically, multiple vocabularies are generated to correct quantization artifacts and improve recall. However, this routine is corrupted by vocabulary correlation, i.e., overlapping among different vocabularies. Vocabulary correlation leads to an over-counting of the indexed features in the overlapped area, or the intersection set, thus compromising the retrieval accuracy. In order to address the correlation problem while preserve the benefit of high recall, this paper proposes a Bayes merging approach to down-weight the indexed features in the intersection set. Through explicitly modeling the correlation problem in a probabilistic view, a joint similarity on both image- and feature-level is estimated for the indexed features in the intersection set. We evaluate our method through extensive experiments on three benchmark datasets. Albeit simple, Bayes merging can be well applied in various merging tasks, and consistently improves the baselines on multi-vocabulary merging. Moreover, Bayes merging is efficient in terms of both time and memory cost, and yields competitive performance compared with the state-of-the-art methods.Comment: 8 pages, 7 figures, 6 tables, accepted to CVPR 201

    Image retrieval with hierarchical matching pursuit

    Full text link
    A novel representation of images for image retrieval is introduced in this paper, by using a new type of feature with remarkable discriminative power. Despite the multi-scale nature of objects, most existing models perform feature extraction on a fixed scale, which will inevitably degrade the performance of the whole system. Motivated by this, we introduce a hierarchical sparse coding architecture for image retrieval to explore multi-scale cues. Sparse codes extracted on lower layers are transmitted to higher layers recursively. With this mechanism, cues from different scales are fused. Experiments on the Holidays dataset show that the proposed method achieves an excellent retrieval performance with a small code length.Comment: 5 pages, 6 figures, conferenc

    Region-Based Image Retrieval Revisited

    Full text link
    Region-based image retrieval (RBIR) technique is revisited. In early attempts at RBIR in the late 90s, researchers found many ways to specify region-based queries and spatial relationships; however, the way to characterize the regions, such as by using color histograms, were very poor at that time. Here, we revisit RBIR by incorporating semantic specification of objects and intuitive specification of spatial relationships. Our contributions are the following. First, to support multiple aspects of semantic object specification (category, instance, and attribute), we propose a multitask CNN feature that allows us to use deep learning technique and to jointly handle multi-aspect object specification. Second, to help users specify spatial relationships among objects in an intuitive way, we propose recommendation techniques of spatial relationships. In particular, by mining the search results, a system can recommend feasible spatial relationships among the objects. The system also can recommend likely spatial relationships by assigned object category names based on language prior. Moreover, object-level inverted indexing supports very fast shortlist generation, and re-ranking based on spatial constraints provides users with instant RBIR experiences.Comment: To appear in ACM Multimedia 2017 (Oral

    CNN Features off-the-shelf: an Astounding Baseline for Recognition

    Full text link
    Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the \overfeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the \overfeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the \overfeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.Comment: version 3 revisions: 1)Added results using feature processing and data augmentation 2)Referring to most recent efforts of using CNN for different visual recognition tasks 3) updated text/captio
    • …
    corecore