436 research outputs found

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also describe

    In Vivo Methods for the Assessment of Topical Drug Bioavailability

    Get PDF
    This paper reviews some current methods for the in vivo assessment of local cutaneous bioavailability in humans after topical drug application. After an introduction discussing the importance of local drug bioavailability assessment and the limitations of model-based predictions, the focus turns to the relevance of experimental studies. The available techniques are then reviewed in detail, with particular emphasis on the tape stripping and microdialysis methodologies. Other less developed techniques, including the skin biopsy, suction blister, follicle removal and confocal Raman spectroscopy techniques are also described

    EFFECTS OF OXIDATIVE MODIFICATIONS ON SUBUNIT INTERACTIONS IN HEMOGLOBIN

    Get PDF
    Much is known regarding the folding reactions of small, single domain proteins. However, the extent to which these principles apply to the folding of large, multi-domain proteins, and multi-subunit protein complexes, remains to be seen. Monitoring the (un)folding reactions of such proteins poses unique challenges, and requires instrumentation capable of distinguishing intramolecular contacts from intermoleculer interactions. Electrospray ionization (ESI) mass spectrometry (MS) offers enormous potential to the study of multi-subunit protein complexes, as it simultaneously detects and resolves coexisting protein species and conformers in solution. Such high selectivity combined with excellent sensitivity makes ESI-MS a primary tool in the study of higher-order protein folding reactions. The work herein examines the unfolding reaction of the multi-subunit oxygen transport protein hemoglobin (Hb) using ESI-MS in combination with UV-Vis spectroscopy. The results strongly support a symmetrical dissociation mechanism, which contradicts a previously proposed mechanism supporting an asymmetric disassembly. This apparent contradiction is attributed to non-native oxidative modifications which destabilize the native state. Due to the nature of ESI, instrument-induced analyte oxidation is a concern. The process of ESI-induced analyte oxidation is discussed and the mechanism of which is determined. Prevention strategies are therefore put forth, since given the effects of oxidation on folding, it is vital to distinguish solution phase analyte oxidation from instrument-induced oxidation

    Modelling and optimization of the ion exchange membrane bioreactor for removal of anionic pollutants from drinking water streams

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Química, especialidade de Engenharia BioquímicaThe present work aimed at studying the treatment of drinking water supplies contaminated with perchlorate and nitrate, using the Ion Exchange Membrane Bioreactor (IEMB) concept. This system combines the transport of these two anions from contaminated water, through an anion exchange membrane, with their biological reduction in a separate compartment. In the IEMB, the mass transport is dependent not only from membrane properties but also from the biocompartment conditions. Multivariate statistical techniques allowed determining the most important process parameters related mainly to the compositions of the polluted water stream and biomedium and to the fluid dynamics operating conditions. The combination of statistical techniques with mechanistic modelling was a major achievement since the counterion transport across the membrane was successfully simulated and predicted under biological reactions ratelimiting conditions. Since nitrate is present in the contaminated water in much higher concentration than that of perchlorate, the IEMB process rate was mainly limited by the perchlorate bioreduction kinetics. This difference influenced organisation of microbial communities in the biofilm. This organization allows sequentially reduction of nitrate and perchlorate thus minimizing perchlorate inhibition by nitrate. Considering a possible large-scale application, it is essential to determine the effect of the key process variables. In this work, the performance of a plate and-frame module configuration, consisting of a series of anion-exchange membranes was investigated. It was found that contaminated water streams are effectively treated and that secondary contamination of treated water by the carbon source used was avoided by a start-up procedure involving a gradual increase of ethanol feeding to the IEMB biocompartment.Fundação para a Ciência e Tecnologia - SFRH/BD/25275/200

    Structural Elucidation of Membrane Proteins Involved in Photosynthesis

    Get PDF
    abstract: Over the last century, X-ray crystallography has been established as the most successful technique for unravelling the structure-function relationship in molecules. For integral membrane proteins, growing well-ordered large crystals is a challenge and hence, there is room for improving current methods of macromolecular crystallography and for exploring complimentary techniques. Since protein function is deeply associated with its structural dynamics, static position of atoms in a macromolecule are insufficient to unlock the mechanism. The availability of X-ray free electron lasers presents an opportunity to study micron-sized crystals that could be triggered (using light, small molecules or physical conditions) to capture macromolecules in action. This method of ‘Time-resolved serial crystallography’ answers key biological questions by capturing snapshots of conformational changes associated with multi-step reactions. This dissertation describes approaches for studying structures of large membrane protein complexes. Both macro and micro-seeding techniques have been implemented for improving crystal quality and obtaining high-resolution structures. Well-diffracting 15-20 micron crystals of active Photosystem II were used to perform time-resolved studies with fixed-target Roadrunner sample delivery system. By employing continuous diffraction obtained up to 2 A, significant progress can be made towards understanding the process of water oxidation. Structure of Photosystem I was solved to 2.3 A by X-ray crystallography and to medium resolution of 4.8 A using Cryogenic electron microscopy. Using complimentary techniques to study macromolecules provides an insight into differences among methods in structural biology. This helps in overcoming limitations of one specific technique and contributes in greater knowledge of the molecule under study.Dissertation/ThesisDoctoral Dissertation Biochemistry 201

    Measuring at high sensitivity by nuclear imaging the permeation of ultrasmall nanoparticles across polymeric and biological membranes

    Get PDF
    L'objectif de ce projet est de développer une nouvelle technique basée sur l'imagerie nucléaire pour mesurer à haute sensibilité et en temps réel la perméation de substances (molécules ou nanoparticules) à travers des polymères et des membranes biologiques. Les gants de polymère sont utilisés comme équipements de protection individuelle dans de nombreux domaines d'activité professionnelle où les risques chimiques sont présents. L'efficacité des gants à bloquer le passage de certaines substances est mesurée par des dispositifs dédiés appelés cellules de diffusion (DFC). Ces dispositifs sont constitués d'un compartiment donneur (DC) et d'un compartiment accepteur (AC), séparés par une membrane. Habituellement, la perméation des substances à travers les membranes est mesurée en prélevant des échantillons dans l'AC à différents moments, afin de révéler les profils de perméation à partir desquels les paramètres clés de perméation peuvent être extraits. Cependant, lorsqu'il faut mesurer le passage de faibles concentrations de composés potentiellement toxiques (par exemple, des pesticides ou des agents de chimiothérapie), ou de nanoparticules (NPs), les limites de détection des techniques analytiques actuelles sont généralement insuffisantes pour révéler leur profil de perméation avec précision. Il est donc difficile d'extraire les paramètres de perméation tels que le temps de latence, l'influx et les coefficients de diffusion. Afin de mesurer de manière précise et quantitative les paramètres cinétiques décrivant le passage de substances (molécules ou NPs) à travers des membranes polymériques et des membranes biologiques, il est nécessaire de développer une DFC utilisant un mode de détection avec un très haut degré de sensibilité et permettant des mesures en continu. Dans ce projet de recherche, une nouvelle technologie a été développée sous la forme d'une DFC adaptée à l'imagerie nucléaire. La tomographie par émission de positrons (TEP) permet la détection de molécules et de NPs avec un degré de sensibilité bien supérieur aux méthodes spectroscopiques et spectrométriques habituellement employées pour la détection des processus de perméation. Des études de diffusion des petites molécules radiomarquées à travers des membranes de dialyse ont d'abord été réalisées, afin de prouver le concept de cette nouvelle technologie. Ensuite, la perméation de NPs radiomarquées à travers des gants et des membranes biologiques a été évaluée. Les nanoparticules d'or (AuNPS) ont été utilisées comme type de contaminant car ce type de produit, de plus en plus utilisé en médecine, est particulièrement difficile à détecter par les techniques de mesure habituelles dans les tests de perméation. Les données acquises au cours de ces études ont permis de mettre en évidence des profils de perméation de NPs avec une très haute résolution temporelle, et une sensibilité de détection permettant de calculer tous les principaux paramètres décrivant la perméation des contaminants à travers les membranes (coefficient de diffusion, temps de latence, taux de perméation, etc). Cette technologie pourrait être utilisée pour évaluer la diffusion de matières dangereuses à travers les gants utilisés comme équipement de protection. La diffusion d'ingrédients actifs à partir de formulations topiques, buccales et ophtalmiques, ainsi que la diffusion de produits cosmétiques appliqués sur la peau, pourront aussi être étudiées.The objective of this project is to develop a new measurement technique based on nuclear imaging, to measure at high sensitivity and in real-time, the permeation of substances (molecules or nanoparticles) through polymers and biological membranes. Polymer gloves are used as personal protective equipment in many areas of professional activity where chemical risks are present. The effectiveness of polymers in blocking the passage of certain substances is measured by dedicated devices known as diffusion cells (DFC). These devices are made of a donor (DC) and an acceptor (AC) compartment, separated by a membrane. Usually, the permeation of substances across membranes is measured by sampling from the AC at different time points, to reveal permeation profiles from which key permeation parameters can be extracted. However, for measuring the passage of low concentration of potentially toxic compounds (e.g. pesticides or chemotherapy agents), or nanoparticles (NPs), the detection limits of current analytical techniques are generally insufficient to reveal their permeation profile accurately. Thus, itis hard to extract permeation parameters as the lag time, the influx, and diffusion coefficients. In order to accurately and quantitatively measure the kinetic parameters describing the passage of substances (molecules or NPs) through polymeric and biological membranes, it is necessary to develop DFCs using a high sensitivity detection modality that allows continuous measurements. In this research project, a new technology was developed in the form of a DFC adapted to nuclear imaging. Nuclear imaging such as positron emission tomography (PET) allows the detection of molecules and NPs with a degree of sensitivity far superior to the spectroscopic and spectrometric methods usually employed for the detection of permeation processes. Diffusion studies of small molecular weight radiolabeled molecules across dialysis membranes was first performed, to prove the concept of this novel technology. Then, the permeation of radiolabeled NPs through gloves and biological membranes was evaluated. Gold nanoparticles (AuNPs) were used as a type of contaminant because they are increasingly used in medicine and because it is particularly difficult to detect them by the usual measurement techniques in permeation tests. The data acquired during these studies allowed to reveal NP permeation profiles with a very high temporal resolution, at a detection sensitivity allowing to calculate all the main parameters describing the permeation of contaminants through membranes (lag time, permeation rate, diffusion coefficient, etc). The technology could be used to assess the diffusion of hazardous materials through gloves used as protective gear, as well as the diffusion of active ingredients and NPs from topical, buccal and ophthalmic drug formulations, as well as the diffusion of cosmetic products applied to the skin

    Smoking and Second Hand Smoking in Adolescents with Chronic Kidney Disease: A Report from the Chronic Kidney Disease in Children (CKiD) Cohort Study

    Get PDF
    The goal of this study was to determine the prevalence of smoking and second hand smoking [SHS] in adolescents with CKD and their relationship to baseline parameters at enrollment in the CKiD, observational cohort study of 600 children (aged 1-16 yrs) with Schwartz estimated GFR of 30-90 ml/min/1.73m2. 239 adolescents had self-report survey data on smoking and SHS exposure: 21 [9%] subjects had “ever” smoked a cigarette. Among them, 4 were current and 17 were former smokers. Hypertension was more prevalent in those that had “ever” smoked a cigarette (42%) compared to non-smokers (9%), p\u3c0.01. Among 218 non-smokers, 130 (59%) were male, 142 (65%) were Caucasian; 60 (28%) reported SHS exposure compared to 158 (72%) with no exposure. Non-smoker adolescents with SHS exposure were compared to those without SHS exposure. There was no racial, age, or gender differences between both groups. Baseline creatinine, diastolic hypertension, C reactive protein, lipid profile, GFR and hemoglobin were not statistically different. Significantly higher protein to creatinine ratio (0.90 vs. 0.53, p\u3c0.01) was observed in those exposed to SHS compared to those not exposed. Exposed adolescents were heavier than non-exposed adolescents (85th percentile vs. 55th percentile for BMI, p\u3c 0.01). Uncontrolled casual systolic hypertension was twice as prevalent among those exposed to SHS (16%) compared to those not exposed to SHS (7%), though the difference was not statistically significant (p= 0.07). Adjusted multivariate regression analysis [OR (95% CI)] showed that increased protein to creatinine ratio [1.34 (1.03, 1.75)] and higher BMI [1.14 (1.02, 1.29)] were independently associated with exposure to SHS among non-smoker adolescents. These results reveal that among adolescents with CKD, cigarette use is low and SHS is highly prevalent. The association of smoking with hypertension and SHS with increased proteinuria suggests a possible role of these factors in CKD progression and cardiovascular outcomes
    corecore