475 research outputs found

    A Survey on Acoustic Side Channel Attacks on Keyboards

    Full text link
    Most electronic devices utilize mechanical keyboards to receive inputs, including sensitive information such as authentication credentials, personal and private data, emails, plans, etc. However, these systems are susceptible to acoustic side-channel attacks. Researchers have successfully developed methods that can extract typed keystrokes from ambient noise. As the prevalence of keyboard-based input systems continues to expand across various computing platforms, and with the improvement of microphone technology, the potential vulnerability to acoustic side-channel attacks also increases. This survey paper thoroughly reviews existing research, explaining why such attacks are feasible, the applicable threat models, and the methodologies employed to launch and enhance these attacks.Comment: 22 pages, conferenc

    Adversarial Activity Detection and Prediction Using Behavioral Biometrics

    Get PDF
    Behavioral biometrics can be used in different security applications like authentication, identification, etc. One of the trending applications is predicting future activities of people and guessing whether they will engage in malicious activities in the future. In this research, we study the possibility of predicting future activities and propose novel methods for near-future activity prediction. First, we study gait signals captured using smartphone accelerometer sensor and build a model to predict a future gait signal. Activity recognition using body movements captured from mobile phone sensors has been a major point of interest in recent research. Data that is being continuously read from mobile sensors can be used to recognize user activity. We propose a model for predicting human body movements based on the previous activity that has been read from sensors and continuously updating our prediction as new data becomes available. Our results show that our model can predict the future movement signal with a high accuracy that can contribute to several applications in the area. Second, we study keystroke acoustics and build a model for predicting future activities of the users by recording their keystrokes audio. Using keystroke acoustics to predict typed text has significant advantages, such as being recorded covertly from a distance and requiring no physical access to the computer system. Recently, some studies have been done on keystroke acoustics, however, to the best of our knowledge none have used them to predict adversarial activities. On a dataset of two million keystrokes consisting of seven adversarial and one benign activity, we use a signal processing approach to extract keystrokes from the audio and a clustering method to recover the typed letters followed by a text recovery module to regenerate the typed words. Furthermore, we use a neural network model to classify the benign and adversarial activities and achieve significant results: (1) we extract individual keystroke sounds from the raw audio with 91% accuracy and recover words from audio recordings in a noisy environment with 71% average top-10 accuracy. (2) We classify adversarial activities with 93% to 98% average accuracy under different operating scenarios. Third, we study the correlation between the personality traits of users with their keystroke and mouse dynamics. Even with the availability of multiple interfaces, such as voice, touch, etc., keyboard and mouse remain the primary interfaces to a computer. Any insights on the relation between keyboard and mouse dynamics with the personality type of the users can provide foundations for various applications, such as advertisement, social media, etc. We use a dataset of keystroke and mouse dynamics collected from 104 users together with their responses to two personality tests to analyze how their interaction with the computer relates to their personality. Our findings show that there are considerable trends and patterns in keystroke and mouse dynamics that are correlated with each personality type

    Keystroke dynamics in the pre-touchscreen era

    Get PDF
    Biometric authentication seeks to measure an individualā€™s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individualsā€™ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts

    Towards Inferring Mechanical Lock Combinations using Wrist-Wearables as a Side-Channel

    Full text link
    Wrist-wearables such as smartwatches and fitness bands are equipped with a variety of high-precision sensors that support novel contextual and activity-based applications. The presence of a diverse set of on-board sensors, however, also expose an additional attack surface which, if not adequately protected, could be potentially exploited to leak private user information. In this paper, we investigate the feasibility of a new attack that takes advantage of a wrist-wearable's motion sensors to infer input on mechanical devices typically used to secure physical access, for example, combination locks. We outline an inference framework that attempts to infer a lock's unlock combination from the wrist motion captured by a smartwatch's gyroscope sensor, and uses a probabilistic model to produce a ranked list of likely unlock combinations. We conduct a thorough empirical evaluation of the proposed framework by employing unlocking-related motion data collected from human subject participants in a variety of controlled and realistic settings. Evaluation results from these experiments demonstrate that motion data from wrist-wearables can be effectively employed as a side-channel to significantly reduce the unlock combination search-space of commonly found combination locks, thus compromising the physical security provided by these locks

    Synesthesia: Detecting Screen Content via Remote Acoustic Side Channels

    Full text link
    We show that subtle acoustic noises emanating from within computer screens can be used to detect the content displayed on the screens. This sound can be picked up by ordinary microphones built into webcams or screens, and is inadvertently transmitted to other parties, e.g., during a videoconference call or archived recordings. It can also be recorded by a smartphone or "smart speaker" placed on a desk next to the screen, or from as far as 10 meters away using a parabolic microphone. Empirically demonstrating various attack scenarios, we show how this channel can be used for real-time detection of on-screen text, or users' input into on-screen virtual keyboards. We also demonstrate how an attacker can analyze the audio received during video call (e.g., on Google Hangout) to infer whether the other side is browsing the web in lieu of watching the video call, and which web site is displayed on their screen

    SoK: Acoustic Side Channels

    Full text link
    We provide a state-of-the-art analysis of acoustic side channels, cover all the significant academic research in the area, discuss their security implications and countermeasures, and identify areas for future research. We also make an attempt to bridge side channels and inverse problems, two fields that appear to be completely isolated from each other but have deep connections.Comment: 16 page
    • ā€¦
    corecore