630 research outputs found

    Design and development of a CMOS power amplifier for digital applications

    Get PDF
    Master'sMASTER OF ENGINEERIN

    CMOS MESFET Cascode Amplifiers for RFIC Applications

    Get PDF
    abstract: There is an ever-increasing demand for higher bandwidth and data rate ensuing from exploding number of radio frequency integrated systems and devices. As stated in the Shannon-Hartley theorem, the maximum achievable data rate of a communication channel is linearly proportional to the system bandwidth. This is the main driving force behind pushing wireless systems towards millimeter-wave frequency range, where larger bandwidth is available at a higher carrier frequency. Observing the Moor’s law, highly scaled complementary metal–oxide–semiconductor (CMOS) technologies provide fast transistors with a high unity power gain frequency which enables operating at millimeter-wave frequency range. CMOS is the compelling choice for digital and signal processing modules which concurrently offers high computation speed, low power consumption, and mass integration at a high manufacturing yield. One of the main shortcomings of the sub-micron CMOS technologies is the low breakdown voltage of the transistors that limits the dynamic range of the radio frequency (RF) power blocks, especially with the power amplifiers. Low voltage swing restricts the achievable output power which translates into low signal to noise ratio and degraded linearity. Extensive research has been done on proposing new design and IC fabrication techniques with the goal of generating higher output power in CMOS technology. The prominent drawbacks of these solutions are an increased die area, higher cost per design, and lower overall efficiency due to lossy passive components. In this dissertation, CMOS compatible metal–semiconductor field-effect transistor (MESFETs) are utilized to put forward a new solution to enhance the power amplifier’s breakdown voltage, gain and maximum output power. Requiring no change to the conventional CMOS process flow, this low cost approach allows direct incorporation of high voltage power MESFETs into silicon. High voltage MESFETs were employed in a cascode structure to push the amplifier’s cutoff frequency and unity power gain frequency to the 5G and K-band frequency range. This dissertation begins with CMOS compatible MESFET modeling and fabrication steps, and culminates in the discussion of amplifier design and optimization methodology, parasitic de-embedding steps, simulation and measurement results, and high resistivity RF substrate characterization.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Energy Efficient RF Transmitter Design using Enhanced Breakdown Voltage SOI-CMOS Compatible MESFETs

    Get PDF
    abstract: The high cut-off frequency of deep sub-micron CMOS technologies has enabled the integration of radio frequency (RF) transceivers with digital circuits. However, the challenging point is the integration of RF power amplifiers, mainly due to the low breakdown voltage of CMOS transistors. Silicon-on-insulator (SOI) metal semiconductor field effect transistors (MESFETs) have been introduced to remedy the limited headroom concern in CMOS technologies. The MESFETs presented in this thesis have been fabricated on different SOI-CMOS processes without making any change to the standard fabrication steps and offer 2-30 times higher breakdown voltage than the MOSFETs on the same process. This thesis explains the design steps of high efficiency and wideband RF transmitters using the proposed SOI-CMOS compatible MESFETs. This task involves DC and RF characterization of MESFET devices, along with providing a compact Spice model for simulation purposes. This thesis presents the design of several SOI-MESFET RF power amplifiers operating at 433, 900 and 1800 MHz with ~40% bandwidth. Measurement results show a peak power added efficiency (PAE) of 55% and a peak output power of 22.5 dBm. The RF-PAs were designed to operate in Class-AB mode to minimize the linearity degradation. Class-AB power amplifiers lead to poor power added efficiency, especially when fed with signals with high peak to average power ratio (PAPR) such as wideband code division multiple access (W-CDMA). Polar transmitters have been introduced to improve the efficiency of RF-PAs at backed-off powers. A MESFET based envelope tracking (ET) polar transmitter was designed and measured. A low drop-out voltage regulator (LDO) was used as the supply modulator of this polar transmitter. MESFETs are depletion mode devices; therefore, they can be configured in a source follower configuration to have better stability and higher bandwidth that MOSFET based LDOs. Measurement results show 350 MHz bandwidth while driving a 10 pF capacitive load. A novel polar transmitter is introduced in this thesis to alleviate some of the limitations associated with polar transmitters. The proposed architecture uses the backgate terminal of a partially depleted transistor on SOI process, which relaxes the bandwidth and efficiency requirements of the envelope amplifier in a polar transmitter. The measurement results of the proposed transmitter demonstrate more than three times PAE improvement at 6-dB backed-off output power, compared to the traditional RF transmitters.Dissertation/ThesisPh.D. Electrical Engineering 201

    POWER AND PERFORMANCE STUDIES OF THE EXPLICIT MULTI-THREADING (XMT) ARCHITECTURE

    Get PDF
    Power and thermal constraints gained critical importance in the design of microprocessors over the past decade. Chipmakers failed to keep power at bay while sustaining the performance growth of serial computers at the rate expected by consumers. As an alternative, they turned to fitting an increasing number of simpler cores on a single die. While this is a step forward for relaxing the constraints, the issue of power is far from resolved and it is joined by new challenges which we explain next. As we move into the era of many-cores, processors consisting of 100s, even 1000s of cores, single-task parallelism is the natural path for building faster general-purpose computers. Alas, the introduction of parallelism to the mainstream general-purpose domain brings another long elusive problem to focus: ease of parallel programming. The result is the dual challenge where power efficiency and ease-of-programming are vital for the prevalence of up and coming many-core architectures. The observations above led to the lead goal of this dissertation: a first order validation of the claim that even under power/thermal constraints, ease-of-programming and competitive performance need not be conflicting objectives for a massively-parallel general-purpose processor. As our platform, we choose the eXplicit Multi-Threading (XMT) many-core architecture for fine grained parallel programs developed at the University of Maryland. We hope that our findings will be a trailblazer for future commercial products. XMT scales up to thousand or more lightweight cores and aims at improving single task execution time while making the task for the programmer as easy as possible. Performance advantages and ease-of-programming of XMT have been shown in a number of publications, including a study that we present in this dissertation. Feasibility of the hardware concept has been exhibited via FPGA and ASIC (per our partial involvement) prototypes. Our contributions target the study of power and thermal envelopes of an envisioned 1024-core XMT chip (XMT1024) under programs that exist in popular parallel benchmark suites. First, we compare XMT against an area and power equivalent commercial high-end many-core GPU. We demonstrate that XMT can provide an average speedup of 8.8x in irregular parallel programs that are common and important in general purpose computing. Even under the worst-case power estimation assumptions for XMT, average speedup is only reduced by half. We further this study by experimentally evaluating the performance advantages of Dynamic Thermal Management (DTM), when applied to XMT1024. DTM techniques are frequently used in current single and multi-core processors, however until now their effects on single-tasked many-cores have not been examined in detail. It is our purpose to explore how existing techniques can be tailored for XMT to improve performance. Performance improvements up to 46% over a generic global management technique has been demonstrated. The insights we provide can guide designers of other similar many-core architectures. A significant infrastructure contribution of this dissertation is a highly configurable cycle-accurate simulator, XMTSim. To our knowledge, XMTSim is currently the only publicly-available shared-memory many-core simulator with extensive capabilities for estimating power and temperature, as well as evaluating dynamic power and thermal management algorithms. As a major component of the XMT programming toolchain, it is not only used as the infrastructure in this work but also contributed to other publications and dissertations

    Silicon- and Graphene-based FETs for THz technology

    Get PDF
    [EN] This Thesis focuses on the study of the response to Terahertz (THz) electromagnetic radiation of different silicon substrate-compatible FETs. Strained-Si MODFETs, state-of- the-art FinFETs and graphene-FETs were studied. The first part of this thesis is devoted to present the results of an experimental and theoretical study of strained-Si MODFETs. These transistors are built by epitaxy of relaxed-SiGe on a conventional Si wafer to permit the fabrication of a strained-Si electron channel to obtain a high-mobility electron gas. Room temperature detection under excitation of 0.15 and 0.3 THz as well as sensitivity to the polarization of incoming radiations were demonstrated. A two-dimensional hydrodynamic-model was developed to conduct TCAD simulations to understand and predict the response of the transistors. Both experimental data and TCAD results were in good agreement demonstrating both the potential of TCAD as a tool for the design of future new THz devices and the excellent performance of strained-Si MODFETs as THz detectors (75 V/W and 0.06 nW/Hz0.5). The second part of the Thesis reports on an experimental study on the THz behavior of modern silicon FinFETs at room temperature. Silicon FinFETs were characterized in the frequency range 0.14-0.44 THz. The results obtained in this study show the potential of these devices as THz detectors in terms of their excellent Responsivity and NEP figures (0.66 kV/W and 0.05 nW/Hz0.5). Finally, a large part of the Thesis is devoted to the fabrication and characterization of Graphene-based FETs. A novel transfer technique and an in-house-developed setup were implemented in the Nanotechnology Clean Room of the USAL and described in detail in this Thesis. The newly developed transfer technique enables to encapsulate a graphene layer between two flakes of h-BN. Raman measurements confirmed the quality of the fabricated graphene heterostructures and, thus, the excellent properties of encapsulated graphene. The asymmetric dual grating gate graphene FET (ADGG-GFET) concept was introduced as an efficient way to improve the graphene response to THz radiation. High quality ADGG-GFETs were fabricated and characterized under THz radiation. DC measurements confirmed the high quality of graphene heterostructures as it was shown on Raman measurements. A clear THz detection was found for both 0.15 THz and 0.3 THz at 4K when the device was voltage biased either using the back or the top gate of the G-FET. Room temperature THz detection was demonstrated at 0.3 THz using the ADGG-GFET. The device shows a Responsivity and NEP around 2.2 mA/W and 0.04 nW/Hz0.5 respectively at respectively at 4K. It was demonstrated the practical use of the studied devices for inspection of hidden objects by using the in-house developed THz imaging system

    Development of a thin-film space-charge- limited triode Final report, Mar. 1965 - Jun. 1966

    Get PDF
    Development of thin film space charge limited triod
    corecore