505 research outputs found

    Exact BER Performance of Asynchronous MC-DS-CDMA over Fading Channels

    No full text
    In this contribution an accurate average Bit Error Rate (BER) formula is derived for MC-DS-CDMA in the context of asynchronous transmissions and random spreading sequences. We consider a flat Nakagami-m fading channel for each subcarrier. Our analysis is based on the Characteristic Function (CF) and does not rely on any assumption concerning the statistical behavior of the interference. We develop a new closed-form expression for the conditional CF of the inter-carrier interference and provide a procedure for calculating the exact BER expressed in the form of a single numerical integration. The accuracy of the Standard Gaussian Approximation (SGA) technique is also evaluated. Link-level results confirm the accuracy of the SGA for most practical conditions

    A Unified Exact BER Performance Analysis of Asynchronous DS-CDMA Systems Using BPSK Modulation over Fading Channels

    No full text
    Abstract—An asynchronous binary DS-CDMA system using random spreading sequences is considered when communicating over various fading channels. New closed-form expressions are derived for the conditional Characteristic Function (CF) of the multiple access interference. A unified analysis is provided for calculating the exact average Bit Error Rate (BER) expressed in the form of a single numerical integration based on the CF approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and are also compared to those obtained by the Standard Gaussian Approximation (SGA), confirming the accuracy of the SGA for most practical conditions, except for high Signal-to-Noise Ratios (SNR) and for a low number of interferers. Index Terms—BER analysis, CDMA, fading, Rayleigh, Ricean, Hoyt, Nakagami-m, random spreading sequence

    Exact BER Calculation of Asynchronous DS-CDMA Systems Communicating over Hoyt Channels

    No full text
    An asynchronous binary DS-CDMA system using random spreading sequences is considered in flat Hoyt fading channels. A new closed-form expression is derived for the conditional characteristic function of the multiple access interference. The exact average BER is expressed as a single numerical integration based on the characteristic function approach. The numerical results obtained from our exact BER analysis are verified by our simulation results and also compared to those obtained by the standard Gaussian approximation

    Accurate BER Analysis of QPSK Modulated Asynchronous DS-CDMA Systems Communicating over Rayleigh Channels

    No full text
    The accurate average BER calculation of an asynchronous DS-CDMA system using random spreading sequences is studied in Rayleigh fading channels. An accurate closed-form expression is derived for the conditional characteristic function of the multiple access interference. An accurate BER expression is provided, which only requires a single numerical integration. Our numerical simulation results verify its accuracy, and also demonstrate the relative inaccuracy of the Gaussian approximation

    A Space-Time Spreading Assisted Multicarrier DS-CDMA System using OVSF Codes Employing Adaptive Mode Switching Thresholds and Adaptive Modulation

    No full text
    The Concept of Space-Time Spreading (STS) assisted, Adaptive Quadrature Amplitude Modulation (AQAM) aidedMC DS-CDMAis introduced. The AQAMmode-switching thresholds are determined using an on-line real-time Bit-Error-Ratio (BER) based learning procedure. Four different schemes were studied, designed for maintaining a given target BER of 10?2, 10?3, 10?4 and 10?5 both with and without turbo channel coding. The effect of using different number of STS antennas ranging from1 to 8 was also characterized in terms of the achievable effective throughput, characterising the associated system design trade-offs

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Interference-Free Broadband Single- and Multi-Carrier DS-CDMA

    No full text
    The choice of the direct sequence spreading code in DS-CDMA predetermines the properties of the system. This contribution demonstrates that the family of codes exhibiting an interference-free window (IFW) outperforms classic spreading codes, provided that the interfering multi-user and multipath components arrive within this IFW, which may be ensured with the aid of quasi-synchronous adaptive timing advance control. It is demonstrated that the IFW duration may be extended with the advent of multicarrier DS-CDMA proportionately to the number of subcarriers. Hence, the resultant MC DS-CDMA system is capable of exhibiting nearsingle-user performance without employing a multi-user detector. A limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol
    corecore