596 research outputs found

    An Efficient Quadratic Interpolation Scheme for a Third-Order Cell-Centered Finite-Volume Method on Tetrahedral Grids

    Full text link
    In this paper, we propose an efficient quadratic interpolation formula utilizing solution gradients computed and stored at nodes and demonstrate its application to a third-order cell-centered finite-volume discretization on tetrahedral grids. The proposed quadratic formula is constructed based on an efficient formula of computing a projected derivative. It is efficient in that it completely eliminates the need to compute and store second derivatives of solution variables or any other quantities, which are typically required in upgrading a second-order cell-centered unstructured-grid finite-volume discretization to third-order accuracy. Moreover, a high-order flux quadrature formula, as required for third-order accuracy, can also be simplified by utilizing the efficient projected-derivative formula, resulting in a numerical flux at a face centroid plus a curvature correction not involving second derivatives of the flux. Similarly, a source term can be integrated over a cell to high-order in the form of a source term evaluated at the cell centroid plus a curvature correction, again, not requiring second derivatives of the source term. The discretization is defined as an approximation to an integral form of a conservation law but the numerical solution is defined as a point value at a cell center, leading to another feature that there is no need to compute and store geometric moments for a quadratic polynomial to preserve a cell average. Third-order accuracy and improved second-order accuracy are demonstrated and investigated for simple but illustrative test cases in three dimensions

    Lagrangian ADER-WENO Finite Volume Schemes on Unstructured Triangular Meshes Based On Genuinely Multidimensional HLL Riemann Solvers

    Full text link
    In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space-time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allows for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies
    • …
    corecore