129 research outputs found

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years

    Accelerated integral equation techniques for solving EM wave propagation and scattering problems

    Get PDF
    This dissertation focuses on the development of the robust, efficient and accurate numerical methods of EM wave propagation and scattering from urban, rural areas and random rough surfaces. There are four main contributions of this dissertation. - The Improved Tabulated Interaction Method (ITIM) is proposed to compute EM wave propagation over lossy terrain profiles using a coupled surface integral equation formulation. The ITIM uses a common set of basis functions in conjunction with a simple matching technique to compress the original system to a reduced system containing considerably smaller number of unknowns and therefore provide a very efficient and accurate method. - Initial efforts in using the full-wave method to compute EM wave propagation over urban areas. The un-accelerated full-wave method has a massive computational burden. In order to reduce the computational complexity, Generalized Forward Backward Method (GFBM) is applied (note that the conventional Forward Backward Method diverges in this scenario). - The Improved Forward Backward Method with Spectral Acceleration (FBM-SA) is proposed to solve the problem of 2D wave scattering from random lossy rough surfaces. - An efficient and accurate iterative method is proposed for computing the 3D wave scattering from 2D dielectric random rough surfaces. The proposed method referred to as the Block Forward Backward Method improves the convergence of the 3D FBM, makes it converge for the case of 2D dielectric surfaces. In addition the Spectral Acceleration is also modified and combined with the BFBM to reduce the computational complexity of the proposed method

    Annual Review of Progress in Applied Computational Electromagnetics

    Get PDF
    Approved for public release; distribution is unlimited

    Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4)

    Get PDF
    The Tropical Composition, Cloud and Climate Coupling Experiment (TC4), was based in Costa Rica and Panama during July and August 2007. The NASA ER-2, DC-8, and WB-57F aircraft flew 26 science flights during TC4. The ER-2 employed 11 instruments as a remote sampling platform and satellite surrogate. The WB-57F used 25 instruments for in situ chemical and microphysical sampling in the tropical tropopause layer (TTL). The DC-8 used 25 instruments to sample boundary layer properties, as well as the radiation, chemistry, and microphysics of the TTL. TC4 also had numerous sonde launches, two ground-based radars, and a ground-based chemical and microphysical sampling site. The major goal of TC4 was to better understand the role that the TTL plays in the Earth's climate and atmospheric chemistry by combining in situ and remotely sensed data from the ground, balloons, and aircraft with data from NASA satellites. Significant progress was made in understanding the microphysical and radiative properties of anvils and thin cirrus. Numerous measurements were made of the humidity and chemistry of the tropical atmosphere from the boundary layer to the lower stratosphere. Insight was also gained into convective transport between the ground and the TTL, and into transport mechanisms across the TTL. New methods were refined and extended to all the NASA aircraft for real-time location relative to meteorological features. The ability to change flight patterns in response to aircraft observations relayed to the ground allowed the three aircraft to target phenomena of interest in an efficient, well-coordinated manner

    Atmospheric Ozone 1985. Assessment of Our Understanding of the Processes Controlling Its Present Distribution and Change, Volume 1

    Get PDF
    Topics addressed include: stratospheric chemistry; tropospheric trace gas (sources, distributions, and trends); tropospheric chemistry (processes, controlling the ozone and hydroxyl radicals); stratosphere-troposphere exchange; dynamic processes; and radiative processes (solar and terrestrial)

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Windowed Integral Equation Methods for Problems of Scattering by Defects and Obstacles in Layered Media

    Get PDF
    This thesis concerns development of efficient high-order boundary integral equation methods for the numerical solution of problems of acoustic and electromagnetic scattering in the presence of planar layered media in two and three spatial dimensions. The interest in such problems arises from application areas that benefit from accurate numerical modeling of the layered media scattering phenomena, such as electronics, near-field optics, plasmonics and photonics as well as communications, radar and remote sensing. A number of efficient algorithms applicable to various problems in these areas are pre- sented in this thesis, including (i) A Sommerfeld integral based high-order integral equation method for problems of scattering by defects in presence of infinite ground and other layered media, (ii) Studies of resonances and near resonances and their impact on the absorptive properties of rough surfaces, and (iii) A novel Window Green Function Method (WGF) for problems of scattering by obstacles and defects in the presence of layered media. The WGF approach makes it possible to completely avoid use of expensive Sommerfeld integrals that are typically utilized in layer-media simulations. In fact, the methods and studies referred in points (i) and (ii) above motivated the development of the markedly more efficient WGF alternative.</p

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium

    Atmospheric Research 2018 Technical Highlights

    Get PDF
    Atmospheric research in the Earth Sciences Division (610) consists of research and technology development programs dedicated to advancing knowledge and understanding of the atmosphere and its interaction with the climate of Earth. The Divisions goals are to improve understanding of the dynamics and physical properties of precipitation, clouds, and aerosols; atmospheric chemistry, including the role of natural and anthropogenic trace species on the ozone balance in the stratosphere and the troposphere; and radiative properties of Earths atmosphere and the influence of solar variability on the Earths climate. Major research activities are carried out in the Mesoscale Atmospheric Processes Laboratory, the Climate and Radiation Laboratory, the Atmospheric Chemistry and Dynamics Laboratory, and the Wallops Field Support Office. The overall scope of the research covers an end-to-end process, starting with the identification of scientific problems, leading to observation requirements for remote sensing platforms, technology and retrieval algorithm development; followed by flight projects and satellite missions; and eventually, resulting in data processing, analyses of measurements, and dissemination from flight projects and missions

    Thirteenth International Laser Radar Conference

    Get PDF
    One hundred fifteen papers were presented in both oral and poster sessions. The topics of the conference sessions were: spaceborne lidar applications; extinction/visibility; differential absorption lidar; winds and tropospheric studies; middle atmosphere; clouds and multiple scattering; pollution studies; and new systems
    • 

    corecore