39 research outputs found

    High Resolution Wind Retrieval for Seawinds on QuikSCAT

    Get PDF
    The Sea Winds instrument was designed to provide wind measurements over the oceans with a resolution of 25x25 km per pixel. Through the use of image enhancement algorithms developed at BYU this resolution can be increased to as fine as 2.5x2.5 km. A description of key portions of this high resolution wind retrieval algorithm is given, with a summary of results

    Simultaneous Wind and Rain Retrieval using Seawinds Data

    Get PDF
    The Sea Winds scatterometer is designed primarily to retrieve winds over the ocean. Since the deployment of Sea Winds on QuikSCAT in 1999, rain corruption in wind measurements has been recognized as one of the largest contributors to wind retrieval error. This paper presents a new estimation method that incorporates rain effects into Sea Winds wind retrieval. The new method simultaneously retrieves wind and rain, giving improved wind estimates in rain-corrupted areas and providing Sea Winds-derived estimates of the rain rate. The simultaneous wind/rain estimation method works especially well in the sweet spot of Sea Winds\u27 swath. On the outer-beam edges of the swath, rain estimation is not possible. This area, however, is only a small fraction of the total data. Wind speeds from simultaneous wind/rain retrieval are nearly unbiased, while the wind-only wind speeds become increasingly biased with rain rate. A synoptic example demonstrates that the new method has the capability of visually reducing the error due to rain while producing a consistent (yet somewhat noisy) estimate of the rain rate

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    An Ocean Surface Wind Vector Model Function For A Spaceborne Microwave Radiometer And Its Application

    Get PDF
    Ocean surface wind vectors over the ocean present vital information for scientists and forecasters in their attempt to understand the Earth\u27s global weather and climate. As the demand for global wind velocity information has increased, the number of satellite missions that carry wind-measuring sensors has also increased; however, there are still not sufficient numbers of instruments in orbit today to fulfill the need for operational meteorological and scientific wind vector data. Over the last three decades operational measurements of global ocean wind speeds have been obtained from passive microwave radiometers. Also, vector ocean surface wind data were primarily obtained from several scatterometry missions that have flown since the early 1990\u27s. However, other than SeaSat-A in 1978, there has not been combined active and passive wind measurements on the same satellite until the launch of the second Advanced Earth Observing Satellite (ADEOS-II) in 2002. This mission has provided a unique data set of coincident measurements between the SeaWinds scatterometer and the Advanced Microwave Scanning Radiometer (AMSR). AMSR observes the vertical and horizontal brightness temperature (TB) at six frequency bands between 6.9 GHz and 89.0 GHz. Although these measurements contain some wind direction information, the overlying atmospheric influence can easily obscure this signal and make wind direction retrieval from passive microwave measurements very difficult. However, at radiometer frequencies between 10 and 37 GHz, a certain linear combination of vertical and horizontal brightness temperatures causes the atmospheric dependence to be nearly cancelled and surface parameters such as wind speed, wind direction and sea surface temperature to dominate the resulting signal. This brightness temperature combination may be expressed as ATBV-TBH, where A is a constant to be determined and the TBV and TBH are the brightness temperatures for the vertical and horizontal polarization respectively. In this dissertation, an empirical relationship between the AMSR\u27s ATBV-TBH and SeaWinds\u27 surface wind vector retrievals was established for three microwave frequencies: 10, 18 and 37 GHz. This newly developed model function for a passive microwave radiometer could provide the basis for wind vector retrievals either separately or in combination with scatterometer measurements

    Satellite remote sensing of surface winds, waves, and currents: Where are we now?

    Get PDF
    This review paper reports on the state-of-the-art concerning observations of surface winds, waves, and currents from space and their use for scientific research and subsequent applications. The development of observations of sea state parameters from space dates back to the 1970s, with a significant increase in the number and diversity of space missions since the 1990s. Sensors used to monitor the sea-state parameters from space are mainly based on microwave techniques. They are either specifically designed to monitor surface parameters or are used for their abilities to provide opportunistic measurements complementary to their primary purpose. The principles on which is based on the estimation of the sea surface parameters are first described, including the performance and limitations of each method. Numerous examples and references on the use of these observations for scientific and operational applications are then given. The richness and diversity of these applications are linked to the importance of knowledge of the sea state in many fields. Firstly, surface wind, waves, and currents are significant factors influencing exchanges at the air/sea interface, impacting oceanic and atmospheric boundary layers, contributing to sea level rise at the coasts, and interacting with the sea-ice formation or destruction in the polar zones. Secondly, ocean surface currents combined with wind- and wave- induced drift contribute to the transport of heat, salt, and pollutants. Waves and surface currents also impact sediment transport and erosion in coastal areas. For operational applications, observations of surface parameters are necessary on the one hand to constrain the numerical solutions of predictive models (numerical wave, oceanic, or atmospheric models), and on the other hand to validate their results. In turn, these predictive models are used to guarantee safe, efficient, and successful offshore operations, including the commercial shipping and energy sector, as well as tourism and coastal activities. Long-time series of global sea-state observations are also becoming increasingly important to analyze the impact of climate change on our environment. All these aspects are recalled in the article, relating to both historical and contemporary activities in these fields

    Estimation of the Degree of Polarization in Polarimetric SAR Imagery : Principles and Applications

    Get PDF
    Les radars à synthèse d’ouverture (RSO) polarimétriques sont devenus incontournables dans le domaine de la télédétection, grâce à leur zone de couverture étendue, ainsi que leur capacité à acquérir des données dans n’importe quelles conditions atmosphériques de jour comme de nuit. Au cours des trois dernières décennies, plusieurs RSO polarimétriques ont été utilisés portant une variété de modes d’imagerie, tels que la polarisation unique, la polarisation double et également des modes dits pleinement polarimétriques. Grâce aux recherches récentes, d’autres modes alternatifs, tels que la polarisation hybride et compacte, ont été proposés pour les futures missions RSOs. Toutefois, un débat anime la communauté de la télédétection quant à l’utilité des modes alternatifs et quant au compromis entre la polarimétrie double et la polarimétrie totale. Cette thèse contribue à ce débat en analysant et comparant ces différents modes d’imagerie RSO dans une variété d’applications, avec un accent particulier sur la surveillance maritime (la détection des navires et de marées noires). Pour nos comparaisons, nous considérons un paramètre fondamental, appelé le degré de polarisation (DoP). Ce paramètre scalaire a été reconnu comme l’un des paramètres les plus pertinents pour caractériser les ondes électromagnétiques partiellement polarisées. A l’aide d’une analyse statistique détaillée sur les images polarimétriques RSO, nous proposons des estimateurs efficaces du DoP pour les systèmes d’imagerie cohérente et incohérente. Ainsi, nous étendons la notion de DoP aux différents modes d’imagerie polarimétrique hybride et compacte. Cette étude comparative réalisée dans différents contextes d’application dégage des propriétés permettant de guider le choix parmi les différents modes polarimétriques. Les expériences sont effectuées sur les données polarimétriques provenant du satellite Canadian RADARSAT-2 et le RSO aéroporté Américain AirSAR, couvrant divers types de terrains tels que l’urbain, la végétation et l’océan. Par ailleurs nous réalisons une étude détaillée sur les potentiels du DoP pour la détection et la reconnaissance des marées noires basée sur les acquisitions récentes d’UAVSAR, couvrant la catastrophe de Deepwater Horizon dans le golfe du Mexique. ABSTRACT : Polarimetric Synthetic Aperture Radar (SAR) systems have become highly fruitful thanks to their wide area coverage and day and night all-weather capabilities. Several polarimetric SARs have been flown over the last few decades with a variety of polarimetric SAR imaging modes; traditional ones are linear singleand dual-pol modes. More sophisticated ones are full-pol modes. Other alternative modes, such as hybrid and compact dual-pol, have also been recently proposed for future SAR missions. The discussion is vivid across the remote sensing society about both the utility of such alternative modes, and also the trade-off between dual and full polarimetry. This thesis contributes to that discussion by analyzing and comparing different polarimetric SAR modes in a variety of geoscience applications, with a particular focus on maritime monitoring and surveillance. For our comparisons, we make use of a fundamental, physically related discriminator called the Degree of Polarization (DoP). This scalar parameter has been recognized as one of the most important parameters characterizing a partially polarized electromagnetic wave. Based on a detailed statistical analysis of polarimetric SAR images, we propose efficient estimators of the DoP for both coherent and in-coherent SAR systems. We extend the DoP concept to different hybrid and compact SAR modes and compare the achieved performance with different full-pol methods. We perform a detailed study of vessel detection and oil-spill recognition, based on linear and hybrid/compact dual-pol DoP, using recent data from the Deepwater Horizon oil-spill, acquired by the National Aeronautics and Space Administration (NASA)/Jet Propulsion Laboratory (JPL) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). Extensive experiments are also performed over various terrain types, such as urban, vegetation, and ocean, using the data acquired by the Canadian RADARSAT-2 and the NASA/JPL Airborne SAR (AirSAR) system

    Earth resources: A continuing bibliography (issue 26)

    Get PDF
    This bibliography lists 480 reports, articles, and other documents introduced into the NASA scientific and technical information system between April 1, 1980 and June 30, 1980. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Remote Sensing for Wind Energy

    Get PDF
    corecore