1,350 research outputs found

    Construction of boundary element models in bioelectromagnetism

    Get PDF
    Multisensor electro- and magnetoencephalographic (EEG and MEG) as well as electro- and magnetocardiographic (ECG and MCG) recordings have been proved useful in noninvasively extracting information on bioelectric excitation. The anatomy of the patient needs to be taken into account, when excitation sites are localized by solving the inverse problem. In this work, a methodology has been developed to construct patient specific boundary element models for bioelectromagnetic inverse problems from magnetic resonance (MR) data volumes as well as from two orthogonal X-ray projections. The process consists of three main steps: reconstruction of 3-D geometry, triangulation of reconstructed geometry, and registration of the model with a bioelectromagnetic measurement system. The 3-D geometry is reconstructed from MR data by matching a 3-D deformable boundary element template to images. The deformation is accomplished as an energy minimization process consisting of image and model based terms. The robustness of the matching is improved by multi-resolution and global-to-local approaches as well as using oriented distance maps. A boundary element template is also used when 3-D geometry is reconstructed from X-ray projections. The deformation is first accomplished in 2-D for the contours of simulated, built from the template, and real X-ray projections. The produced 2-D vector field is back-projected and interpolated on the 3-D template surface. A marching cube triangulation is computed for the reconstructed 3-D geometry. Thereafter, a non-iterative mesh-simplification method is applied. The method is based on the Voronoi-Delaunay duality on a 3-D surface with discrete distance measures. Finally, the triangulated surfaces are registered with a bioelectromagnetic measurement utilizing markers. More than fifty boundary element models have been successfully constructed from MR images using the methods developed in this work. A simulation demonstrated the feasibility of X-ray reconstruction; some practical problems of X-ray imaging need to be solved to begin tests with real data.reviewe

    Diffeomorphic image registration with applications to deformation modelling between multiple data sets

    Get PDF
    Over last years, the diffeomorphic image registration algorithms have been successfully introduced into the field of the medical image analysis. At the same time, the particular usability of these techniques, in majority derived from the solid mathematical background, has been only quantitatively explored for the limited applications such as longitudinal studies on treatment quality, or diseases progression. The thesis considers the deformable image registration algorithms, seeking out those that maintain the medical correctness of the estimated dense deformation fields in terms of the preservation of the object and its neighbourhood topology, offer the reasonable computational complexity to satisfy time restrictions coming from the potential applications, and are able to cope with low quality data typically encountered in Adaptive Radiotherapy (ART). The research has led to the main emphasis being laid on the diffeomorphic image registration to achieve one-to-one mapping between images. This involves introduction of the log-domain parameterisation of the deformation field by its approximation via a stationary velocity field. A quantitative and qualitative examination of existing and newly proposed algorithms for pairwise deformable image registration presented in this thesis, shows that the log-Euclidean parameterisation can be successfully utilised in the biomedical applications. Although algorithms utilising the log-domain parameterisation have theoretical justification for maintaining diffeomorphism, in general, the deformation fields produced by them have similar properties as these estimated by classical methods. Having this in mind, the best compromise in terms of the quality of the deformation fields has been found for the consistent image registration framework. The experimental results suggest also that the image registration with the symmetrical warping of the input images outperforms the classical approaches, and simultaneously can be easily introduced to most known algorithms. Furthermore, the log-domain implicit group-wise image registration is proposed. By linking the various sets of images related to the different subjects, the proposed image registration approach establishes a common subject space and between-subject correspondences therein. Although the correspondences between groups of images can be found by performing the classic image registration, the reference image selection (not required in the proposed implementation), may lead to a biased mean image being estimated and the corresponding common subject space not adequate to represent the general properties of the data sets. The approaches to diffeomorphic image registration have been also utilised as the principal elements for estimating the movements of the organs in the pelvic area based on the dense deformation field prediction system driven by the partial information coming from the specific type of the measurements parameterised using the implicit surface representation, and recognising facial expressions where the stationary velocity fields are used as the facial expression descriptors. Both applications have been extensively evaluated based on the real representative data sets of three-dimensional volumes and two-dimensional images, and the obtained results indicate the practical usability of the proposed techniques

    Biomechanical Modeling for Lung Tumor Motion Prediction during Brachytherapy and Radiotherapy

    Get PDF
    A novel technique is proposed to develop a biomechanical model for estimating lung’s tumor position as a function of respiration cycle time. Continuous tumor motion is a major challenge in lung cancer treatment techniques where the tumor needs to be targeted; e.g. in external beam radiotherapy and brachytherapy. If not accounted for, this motion leads to areas of radiation over and/or under dosage for normal tissue and tumors. In this thesis, biomechanical models were developed for lung tumor motion predication in two distinct cases of lung brachytherapy and lung external beam radiotherapy. The lung and other relevant surrounding organs geometries, loading, boundary conditions and mechanical properties were considered and incorporated properly for each case. While using material model with constant incompressibility is sufficient to model the lung tissue in the brachytherapy case, in external beam radiation therapy the tissue incompressibility varies significantly due to normal breathing. One of the main issues tackled in this research is characterizing lung tissue incompressibility variations and measuring its corresponding parameters as a function of respiration cycle time. Results obtained from an ex-vivo porcine deflated lung indicated feasibility and reliability of using the developed biomechanical model to predict tumor motion during brachytherapy. For external beam radiotherapy, in-silico studies indicated very significant impact of considering the lung tissue incompressibility on the accuracy of predicting tumor motion. Furthermore, ex-vivo porcine lung experiments demonstrated the capability and reliability of the proposed approach for predicting tumor motion as a function of cyclic time. As such, the proposed models have a good potential to be incorporated effectively in computer assisted lung radiotherapy treatment systems

    Registration and Modeling from Spaced and Misaligned Image Volumes

    Get PDF
    We present an integrated registration, segmentation, and shape interpolation framework to model objects from 3D and 4D volumes made up of spaced and misaligned slices having arbitrary relative positions. The framework was validated on artificial data and tested on real MRI and CT scans. The complete framework performed significantly better than the sequential approach of registration followed by segmentation and shape interpo- lation

    Advanced Sensing and Image Processing Techniques for Healthcare Applications

    Get PDF
    This Special Issue aims to attract the latest research and findings in the design, development and experimentation of healthcare-related technologies. This includes, but is not limited to, using novel sensing, imaging, data processing, machine learning, and artificially intelligent devices and algorithms to assist/monitor the elderly, patients, and the disabled population

    Real-time Biomechanical Modeling for Intraoperative Soft Tissue Registration

    Get PDF
    Computer assisted surgery systems intraoperatively support the surgeon by providing information on the location of hidden risk and target structures during surgery. However, soft tissue deformations make intraoperative registration (and thus intraoperative navigation) difficult. In this work, a novel, biomechanics based approach for real-time soft tissue registration from sparse intraoperative sensor data such as stereo endoscopic images is presented to overcome this problem

    Pulmonary Image Segmentation and Registration Algorithms: Towards Regional Evaluation of Obstructive Lung Disease

    Get PDF
    Pulmonary imaging, including pulmonary magnetic resonance imaging (MRI) and computed tomography (CT), provides a way to sensitively and regionally measure spatially heterogeneous lung structural-functional abnormalities. These unique imaging biomarkers offer the potential for better understanding pulmonary disease mechanisms, monitoring disease progression and response to therapy, and developing novel treatments for improved patient care. To generate these regional lung structure-function measurements and enable broad clinical applications of quantitative pulmonary MRI and CT biomarkers, as a first step, accurate, reproducible and rapid lung segmentation and registration methods are required. In this regard, we first developed a 1H MRI lung segmentation algorithm that employs complementary hyperpolarized 3He MRI functional information for improved lung segmentation. The 1H-3He MRI joint segmentation algorithm was formulated as a coupled continuous min-cut model and solved through convex relaxation, for which a dual coupled continuous max-flow model was proposed and a max-flow-based efficient numerical solver was developed. Experimental results on a clinical dataset of 25 chronic obstructive pulmonary disease (COPD) patients ranging in disease severity demonstrated that the algorithm provided rapid lung segmentation with high accuracy, reproducibility and diminished user interaction. We then developed a general 1H MRI left-right lung segmentation approach by exploring the left-to-right lung volume proportion prior. The challenging volume proportion-constrained multi-region segmentation problem was approximated through convex relaxation and equivalently represented by a max-flow model with bounded flow conservation conditions. This gave rise to a multiplier-based high performance numerical implementation based on convex optimization theories. In 20 patients with mild- to-moderate and severe asthma, the approach demonstrated high agreement with manual segmentation, excellent reproducibility and computational efficiency. Finally, we developed a CT-3He MRI deformable registration approach that coupled the complementary CT-1H MRI registration. The joint registration problem was solved by exploring optical-flow techniques, primal-dual analyses and convex optimization theories. In a diverse group of patients with asthma and COPD, the registration approach demonstrated lower target registration error than single registration and provided fast regional lung structure-function measurements that were strongly correlated with a reference method. Collectively, these lung segmentation and registration algorithms demonstrated accuracy, reproducibility and workflow efficiency that all may be clinically-acceptable. All of this is consistent with the need for broad and large-scale clinical applications of pulmonary MRI and CT

    Shape Analysis Based Strategies for Evaluation of Adaptations in In Vivo Right Ventricular Geometry and Mechanics as Effected by Pulmonary Hypertension

    Get PDF
    Pulmonary hypertension (PH) is a deadly disease, which as it progresses over time alters many aspects of the afflicted heart, and particularly the right ventricle (RV), such as its size, shape, and mechanical material properties. However, due to the limitations of what can be measured noninvasively in a standard clinical setting and the difficulty caused by the intrinsic complexity of the human RV, there has been little success to-date to identify clinically obtainable metrics of RV shape, deformation, or material properties that are quantitatively linked to the onset and progression of PH. Towards addressing this challenge, this work proposes the use of the shape and shape change of the RV, which is measurable from standard clinical imaging, along with statistical analysis and inverse material characterization strategies to identify new metrics of RV mechanical function that will be uniquely predictive of the state of the heart subject to PH. Thus, this thesis can be broken into two components: the first is statistical shape analysis of the RV, and the second is inverse characterization of heart wall mechanical material properties from RV shape change and measurable hemodynamics. For the statistical shape analysis investigation, a custom approach using harmonic mapping and proper orthogonal decomposition is applied to determine the fundamental components of shape (i.e., modes) from a dataset of 50 patients with varying states of PH, including some without PH at all. For the inverse characterization work, a novel method was developed to estimate the heterogeneous properties of a structure, given only the target shape of that structure, after a known excitation is applied to deform the structure. Lastly, the inverse characterization algorithm was extended to be applicable to actual in vivo cardiac data, particularly through the inclusion of a registration step to account for the organ-scale rotation and translation of the heart. Future work remains to expand on the computational efficiency of this inverse solution estimation procedure, and to further evaluate and improve upon the consistency and clinical interpretability of the material property estimates
    • …
    corecore