684 research outputs found

    Hybrid Neural Networks with Attention-based Multiple Instance Learning for Improved Grain Identification and Grain Yield Predictions

    Get PDF
    Agriculture is a critical part of the world's food production, being a vital aspect of all societies. Procedures need to be adjusted to their specific environment because of their climate and field condition disparity. Existing research has demonstrated the potential of grain yield predictions on Norwegian farms. However, this research is limited to regional analytics, which is unable to acquire sufficient plant growth factors influenced by field conditions and farmers' decisions. One factor critical for yield prediction is the crop type planted on a per-field basis. This research effort proposes a novel approach for improving crop yield predictions using a hybrid deep neural network utilizing temporal satellite imagery from a remote sensing system. Additionally, We apply a variety of data, including grain production, meteorological data, and geographical data. The crop yield prediction system is supported by a field-based crop type classification model, which supplies features related to crop type and field area. Our crop classification system takes advantage of both raw satellite images as well as carefully chosen vegetation indices. Further, we propose a multi-class attention-based deep multiple instance learning model to utilize semi-labeled datasets, fully benefiting Norwegian data acquisition. Our best crop classification model, which consists of a time distributed network and a gated recurrent unit, classifies crop types with an accuracy of 70\% and is currently state-of-the-art for country-wide crop type mapping in Norway. Lastly, our yield prediction system enables realistic in-season early predictions that could benefit actors in real-life scenarios

    Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices

    Get PDF
    Accurate crop yield forecasting is essential in the food industry’s decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is often employed over an entire region without considering subregional VCI and TCI’s spatial variability resulting from environmental and climatic factors. Furthermore, when using nonlinear ML, redundant VCI/TCI data present additional challenges that adversely affect the models’ output. This study proposes a framework that (i) employs higher-order spatial independent component analysis (sICA), and (ii), exploits a combination of the principal component analysis (PCA) and ML (i.e., PCA-ML combination) to deal with the two challenges in order to enhance crop yield prediction accuracy. The proposed framework consolidates common VCI/TCI spatial variability into their respective subregions, using Vietnam as an example. Compared to the one-fits-all approach, subregional rice yield forecasting models over Vietnam improved by an average level of 20% up to 60%. PCA-ML combination outperformed ML-only by an average of 18.5% up to 45%. The framework generates rice yield predictions 1 to 2 months ahead of the harvest with an average of 5% error, displaying its reliability

    Remote Sensing in Agriculture: State-of-the-Art

    Get PDF
    The Special Issue on “Remote Sensing in Agriculture: State-of-the-Art” gives an exhaustive overview of the ongoing remote sensing technology transfer into the agricultural sector. It consists of 10 high-quality papers focusing on a wide range of remote sensing models and techniques to forecast crop production and yield, to map agricultural landscape and to evaluate plant and soil biophysical features. Satellite, RPAS, and SAR data were involved. This preface describes shortly each contribution published in such Special Issue

    Utilization of Canopy Reflectance to Predict Yield Response of Corn and Cotton to Varying Nitrogen Rates

    Get PDF
    Fertilizer N is one of the most costly inputs in corn (Zea mays L.) and cotton (Gossypium hirsutum L.) production and is a strong yield determining factor. Variable rate N fertilization has the potential to improve resource use efficiency, profitability, and help to minimize adverse environmental impacts. Vegetation indices (VIs) may be useful for in-season crop health monitoring to assist in fertilizer N management and yield prediction. This research determined the utility of aerial imagery in detecting corn and cotton response to varying N supply using five selected VIs. The VIs derived from aerial images, chlorophyll readings and tissue N for corn from V5 to V9 growth stages and cotton beginning the 1st week of flowering through to latelowering were used to relate to fertilizer N rates and plant N status and yield. The results showed that VIs derived from aerial imagery could be used to differentiate N supply and in-season grain yield of corn beginning at V5 to V6; however, models from later growth stages had greater r2 values than earlier growth stages. Single variable models that used VI, chlorophyll content, or plant N concentration as an independent variable were overall stronger than 2 variable Multiple Linear Regression models (MLRs). Three independent variables used in MLRs contained multicollinearity. For cotton, the use of VIs derived from aerial imagery to differentiate N supply may depend on environmental factors such as soil and weather. However, VIs may be useful for in-season lint yield prediction beginning the 1st week of flowering although later stages improved accuracy. The MLRs that were developed with 2 independent variables may be more suitable for in-season lint yield prediction than single independent variable models

    Crop monitoring and yield estimation using polarimetric SAR and optical satellite data in southwestern Ontario

    Get PDF
    Optical satellite data have been proven as an efficient source to extract crop information and monitor crop growth conditions over large areas. In local- to subfield-scale crop monitoring studies, both high spatial resolution and high temporal resolution of the image data are important. However, the acquisition of optical data is limited by the constant contamination of clouds in cloudy areas. This thesis explores the potential of polarimetric Synthetic Aperture Radar (SAR) satellite data and the spatio-temporal data fusion approach in crop monitoring and yield estimation applications in southwestern Ontario. Firstly, the sensitivity of 16 parameters derived from C-band Radarsat-2 polarimetric SAR data to crop height and fractional vegetation cover (FVC) was investigated. The results show that the SAR backscatters are affected by many factors unrelated to the crop canopy such as the incidence angle and the soil background and the degree of sensitivity varies with the crop types, growing stages, and the polarimetric SAR parameters. Secondly, the Minimum Noise Fraction (MNF) transformation, for the first time, was applied to multitemporal Radarsat-2 polarimetric SAR data in cropland area mapping based on the random forest classifier. An overall classification accuracy of 95.89% was achieved using the MNF transformation of the multi-temporal coherency matrix acquired from July to November. Then, a spatio-temporal data fusion method was developed to generate Normalized Difference Vegetation Index (NDVI) time series with both high spatial and high temporal resolution in heterogeneous regions using Landsat and MODIS imagery. The proposed method outperforms two other widely used methods. Finally, an improved crop phenology detection method was proposed, and the phenology information was then forced into the Simple Algorithm for Yield Estimation (SAFY) model to estimate crop biomass and yield. Compared with the SAFY model without forcing the remotely sensed phenology and a simple light use efficiency (LUE) model, the SAFY incorporating the remotely sensed phenology can improve the accuracy of biomass estimation by about 4% in relative Root Mean Square Error (RRMSE). The studies in this thesis improve the ability to monitor crop growth status and production at subfield scale

    Integrating random forest and crop modeling improves the crop yield prediction of winter wheat and oil seed rape

    Get PDF
    The fast and accurate yield estimates with the increasing availability and variety of global satellite products and the rapid development of new algorithms remain a goal for precision agriculture and food security. However, the consistency and reliability of suitable methodologies that provide accurate crop yield outcomes still need to be explored. The study investigates the coupling of crop modeling and machine learning (ML) to improve the yield prediction of winter wheat (WW) and oil seed rape (OSR) and provides examples for the Free State of Bavaria (70,550 km2), Germany, in 2019. The main objectives are to find whether a coupling approach [Light Use Efficiency (LUE) + Random Forest (RF)] would result in better and more accurate yield predictions compared to results provided with other models not using the LUE. Four different RF models [RF1 (input: Normalized Difference Vegetation Index (NDVI)), RF2 (input: climate variables), RF3 (input: NDVI + climate variables), RF4 (input: LUE generated biomass + climate variables)], and one semi-empiric LUE model were designed with different input requirements to find the best predictors of crop monitoring. The results indicate that the individual use of the NDVI (in RF1) and the climate variables (in RF2) could not be the most accurate, reliable, and precise solution for crop monitoring; however, their combined use (in RF3) resulted in higher accuracies. Notably, the study suggested the coupling of the LUE model variables to the RF4 model can reduce the relative root mean square error (RRMSE) from −8% (WW) and −1.6% (OSR) and increase the R 2 by 14.3% (for both WW and OSR), compared to results just relying on LUE. Moreover, the research compares models yield outputs by inputting three different spatial inputs: Sentinel-2(S)-MOD13Q1 (10 m), Landsat (L)-MOD13Q1 (30 m), and MOD13Q1 (MODIS) (250 m). The S-MOD13Q1 data has relatively improved the performance of models with higher mean R 2 [0.80 (WW), 0.69 (OSR)], and lower RRMSE (%) (9.18, 10.21) compared to L-MOD13Q1 (30 m) and MOD13Q1 (250 m). Satellite-based crop biomass, solar radiation, and temperature are found to be the most influential variables in the yield prediction of both crops

    A GENERALIZED APPROACH TO WHEAT YIELD FORECASTING USING EARTH OBSERVATIONS: DATA CONSIDERATIONS, APPLICATION, AND RELEVANCE.

    Get PDF
    In recent years there has been a dramatic increase in the demand for timely, comprehensive global agricultural intelligence. The issue of food security has rapidly risen to the top of government agendas around the world as the recent lack of food access led to unprecedented food prices, hunger, poverty, and civil conflict. Timely information on global crop production is indispensable for combating the growing stress on the world's crop production, for stabilizing food prices, developing effective agricultural policies, and for coordinating responses to regional food shortages. Earth Observations (EO) data offer a practical means for generating such information as they provide global, timely, cost-effective, and synoptic information on crop condition and distribution. Their utility for crop production forecasting has long been recognized and demonstrated across a wide range of scales and geographic regions. Nevertheless it is widely acknowledged that EO data could be better utilized within the operational monitoring systems and thus there is a critical need for research focused on developing practical robust methods for agricultural monitoring. Within this context this dissertation focused on advancing EO-based methods for crop yield forecasting and on demonstrating the potential relevance for adopting EO-based crop forecasts for providing timely reliable agricultural intelligence. This thesis made contributions to this field by developing and testing a robust EO-based method for wheat production forecasting at state to national scales using available and easily accessible data. The model was developed in Kansas (KS) using coarse resolution normalized difference vegetation index (NDVI) time series data in conjunction with out-of-season wheat masks and was directly applied in Ukraine to assess its transferability. The model estimated yields within 7% in KS and 10% in Ukraine of final estimates 6 weeks prior to harvest. The relevance of adopting such methods to provide timely reliable information to crop commodity markets is demonstrated through a 2010 case study

    Earth Observations and Integrative Models in Support of Food and Water Security

    Get PDF
    Global food production depends upon many factors that Earth observing satellites routinely measure about water, energy, weather, and ecosystems. Increasingly sophisticated, publicly-available satellite data products can improve efficiencies in resource management and provide earlier indication of environmental disruption. Satellite remote sensing provides a consistent, long-term record that can be used effectively to detect large-scale features over time, such as a developing drought. Accuracy and capabilities have increased along with the range of Earth observations and derived products that can support food security decisions with actionable information. This paper highlights major capabilities facilitated by satellite observations and physical models that have been developed and validated using remotely-sensed observations. Although we primarily focus on variables relevant to agriculture, we also include a brief description of the growing use of Earth observations in support of aquaculture and fisheries

    Integration of Remote Sensing Approaches for In-Season Nitrogen Management

    Get PDF
    Nitrogen (N) management is being conducted at flat rate in Louisiana due to practicality and convenience, but the price of N fertilizer and high breakeven costs are forcing producers to find ways to reduce costs and optimize N application. In this scenario, precision agriculture technologies, specifically the use of optical sensors on board of unmanned aerial systems (UAS) to variable rate N application on farm is showing a promising approach to save inputs and reduce environmental impacts. However, the general goal of this research was to develop and evaluate in-season N management approaches for N recommendation in corn (Zea mays L.) fields using plant canopy sensors and UAS. The specific objectives were to: 1) investigate the differences in spectral reflectance bands and vegetation indices for sensing the N status of corn, through different hours of the day, under different weather conditions and sun irradiation angulation; and 2) evaluate an in-season N fertilizer recommendation algorithm based on an approach that reflects local conditions and needs for N fertilization using active crop canopy sensor and unmanned aircraft systems coupled with multispectral camera, and to validate and compare the algorithm proposed with other approaches. The experiments were conducted in three fields at the LSU Doyle Chambers Central Research Station located at Ben Hur Road, Baton Rouge, LA, 30.365°N, -91.166°W, with continuous corn during the growing seasons from 2018 to 2021. To investigate time of the day effects on active and passive sensor systems the experiment was conducted at the same location in corn during a day with percentages of cloudy coverage conditions varying from 80 to 100 %, with very few moments of cloud dispersion resulting in 100% of clear sky at the target area. The conclusion in this experiment addressing objective 1 is that the data obtained from passive sensors (commercial UAS camera and spectroradiometer), contrarily to the active crop canopy sensor, presented prominent significant variations in measurements at different times of the day, especially observed when ambient conditions changed solar radiation. This indicates higher sensitivity to changes during the day for the wavebands and vegetation indices derived using these sensors. For objective 2, the main conclusions are: (i) a practical and easy to implement algorithm approach was proposed and validated considering local conditions and implemented in-season, (ii) the use of the Chlorophyl Red Edge Vegetation Index (CIRE) obtained from the crop canopy reflectance with the approaches developed from local data to manage N status, can address spatial variability presented in fields through the different responses obtained for N fertilization across the sites analyzed, and (iii) the virtual approaches using both active and passive sensors, indicated relatively better performances based on yield and partial factor productivity (PFP) responses. Due to the easy implementation this finding suggests that this approach has great potential to be applied for N recommendations regardless of the type of sensor used to collect data
    corecore