5,102 research outputs found

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    Ninth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 20-22, 2008

    Get PDF
    This booklet contains the proceedings of the Ninth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 20-22, 2008. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    A review of key planning and scheduling in the rail industry in Europe and UK

    Get PDF
    Planning and scheduling activities within the rail industry have benefited from developments in computer-based simulation and modelling techniques over the last 25 years. Increasingly, the use of computational intelligence in such tasks is featuring more heavily in research publications. This paper examines a number of common rail-based planning and scheduling activities and how they benefit from five broad technology approaches. Summary tables of papers are provided relating to rail planning and scheduling activities and to the use of expert and decision systems in the rail industry.EPSR

    Biologically inspired, self organizing communication networks.

    Get PDF
    PhDThe problem of energy-efficient, reliable, accurate and self-organized target tracking in Wireless Sensor Networks (WSNs) is considered for sensor nodes with limited physical resources and abrupt manoeuvring mobile targets. A biologically inspired, adaptive multi-sensor scheme is proposed for collaborative Single Target Tracking (STT) and Multi-Target Tracking (MTT). Behavioural data obtained while tracking the targets including the targets’ previous locations is recorded as metadata to compute the target sampling interval, target importance and local monitoring interval so that tracking continuity and energy-efficiency are improved. The subsequent sensor groups that track the targets are selected proactively according to the information associated with the predicted target location probability such that the overall tracking performance is optimized or nearly-optimized. One sensor node from each of the selected groups is elected as a main node for management operations so that energy efficiency and load balancing are improved. A decision algorithm is proposed to allow the “conflict” nodes that are located in the sensing areas of more than one target at the same time to decide their preferred target according to the target importance and the distance to the target. A tracking recovery mechanism is developed to provide the tracking reliability in the event of target loss. The problem of task mapping and scheduling in WSNs is also considered. A Biological Independent Task Allocation (BITA) algorithm and a Biological Task Mapping and Scheduling (BTMS) algorithm are developed to execute an application using a group of sensor nodes. BITA, BTMS and the functional specialization of the sensor groups in target tracking are all inspired from biological behaviours of differentiation in zygote formation. Simulation results show that compared with other well-known schemes, the proposed tracking, task mapping and scheduling schemes can provide a significant improvement in energy-efficiency and computational time, whilst maintaining acceptable accuracy and seamless tracking, even with abrupt manoeuvring targets.Queen Mary university of London full Scholarshi

    Collected notes from the Benchmarks and Metrics Workshop

    Get PDF
    In recent years there has been a proliferation of proposals in the artificial intelligence (AI) literature for integrated agent architectures. Each architecture offers an approach to the general problem of constructing an integrated agent. Unfortunately, the ways in which one architecture might be considered better than another are not always clear. There has been a growing realization that many of the positive and negative aspects of an architecture become apparent only when experimental evaluation is performed and that to progress as a discipline, we must develop rigorous experimental methods. In addition to the intrinsic intellectual interest of experimentation, rigorous performance evaluation of systems is also a crucial practical concern to our research sponsors. DARPA, NASA, and AFOSR (among others) are actively searching for better ways of experimentally evaluating alternative approaches to building intelligent agents. One tool for experimental evaluation involves testing systems on benchmark tasks in order to assess their relative performance. As part of a joint DARPA and NASA funded project, NASA-Ames and Teleos Research are carrying out a research effort to establish a set of benchmark tasks and evaluation metrics by which the performance of agent architectures may be determined. As part of this project, we held a workshop on Benchmarks and Metrics at the NASA Ames Research Center on June 25, 1990. The objective of the workshop was to foster early discussion on this important topic. We did not achieve a consensus, nor did we expect to. Collected here is some of the information that was exchanged at the workshop. Given here is an outline of the workshop, a list of the participants, notes taken on the white-board during open discussions, position papers/notes from some participants, and copies of slides used in the presentations

    A Communication Choreography for Discrete Step MultiAgent Social Simulations

    Get PDF
    Considerable research has been done on agent communications, yet in discrete step social agent simulations there is no standardized work done to facilitate reactive agent-to-agent communication. We propose an agent-to-agent interaction framework that preserves the integrity of the communication process in an artificial society in a \u27time-stepped\u27 discrete event simulator. We introduce the modeling language called Agent Choreography Description Language (ACDL) in order to model the communication. It serves in describing the common and collaborative observable behaviour of multiple agents that need to interact in a peer to peer manner to achieve some goal. ACDL further adopts the parallel and interaction activities to model proper communication in an artificial society. The ACDL communication framework is implemented and tested in REPAST. It employs a communication manager to generate and execute ACDL specification according to agent\u27s communication needs

    Simulated Clinical Trias: some design issues

    Get PDF
    Simulation is widely used to investigate real-world systems in a large number of fields, including clinical trials for drug development, since real trials are costly, frequently fail and may lead to serious side effects. This paper is a survey of the statistical issues arising in these simulated trials. We illustrate the broad applicability of this investigation tool by means of examples selected from the literature. We discuss the aims and the peculiarities of the simulation models used in this context, including a brief mention of the use of metamodels. Of special interest is the topic of the design of the virtual experiments, stressing similarities and differences with the design of real life trials. Since it is important for a computerized model to possess a satisfactory range of accuracy consistent with its intended application, real data provided by physical experiments are used to confirm the simulator : we illustrate validating techniques through a number of examples. We end the paper with some challenging questions on the scientificity, ethics and effectiveness of simulation in the clinical research, and the interesting research problem of how to integrate simulated and physical experiments in a clinical context.Simulation models; pharmacokinetics; pharmacodynamics; model validation; experimental design, ethics. Modelli di simulazione; farmacocinetica; farmacodinamica; validazione; disegno degli esperimenti; etica.
    • …
    corecore