7,599 research outputs found

    The curvelet transform for image denoising

    Get PDF
    We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform and the curvelet transform. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourier-domain computation of an approximate digital Radon transform. We introduce a very simple interpolation in the Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudo-polar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of a` trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with "state of the art" techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including tree-based Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than wavelet-based reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement

    Detection and Removal of Artifacts in Astronomical Images

    Full text link
    Astronomical images from optical photometric surveys are typically contaminated with transient artifacts such as cosmic rays, satellite trails and scattered light. We have developed and tested an algorithm that removes these artifacts using a deep, artifact free, static sky coadd image built up through the median combination of point spread function (PSF) homogenized, overlapping single epoch images. Transient artifacts are detected and masked in each single epoch image through comparison with an artifact free, PSF-matched simulated image that is constructed using the PSF-corrected, model fitting catalog from the artifact free coadd image together with the position variable PSF model of the single epoch image. This approach works well not only for cleaning single epoch images with worse seeing than the PSF homogenized coadd, but also the traditionally much more challenging problem of cleaning single epoch images with better seeing. In addition to masking transient artifacts, we have developed an interpolation approach that uses the local PSF and performs well in removing artifacts whose widths are smaller than the PSF full width at half maximum, including cosmic rays, the peaks of saturated stars and bleed trails. We have tested this algorithm on Dark Energy Survey Science Verification data and present performance metrics. More generally, our algorithm can be applied to any survey which images the same part of the sky multiple times.Comment: 17 pages, 6 figures. Accepted for publication in Astronomy and Computin

    PVR: Patch-to-Volume Reconstruction for Large Area Motion Correction of Fetal MRI

    Get PDF
    In this paper we present a novel method for the correction of motion artifacts that are present in fetal Magnetic Resonance Imaging (MRI) scans of the whole uterus. Contrary to current slice-to-volume registration (SVR) methods, requiring an inflexible anatomical enclosure of a single investigated organ, the proposed patch-to-volume reconstruction (PVR) approach is able to reconstruct a large field of view of non-rigidly deforming structures. It relaxes rigid motion assumptions by introducing a specific amount of redundant information that is exploited with parallelized patch-wise optimization, super-resolution, and automatic outlier rejection. We further describe and provide an efficient parallel implementation of PVR allowing its execution within reasonable time on commercially available graphics processing units (GPU), enabling its use in the clinical practice. We evaluate PVR's computational overhead compared to standard methods and observe improved reconstruction accuracy in presence of affine motion artifacts of approximately 30% compared to conventional SVR in synthetic experiments. Furthermore, we have evaluated our method qualitatively and quantitatively on real fetal MRI data subject to maternal breathing and sudden fetal movements. We evaluate peak-signal-to-noise ratio (PSNR), structural similarity index (SSIM), and cross correlation (CC) with respect to the originally acquired data and provide a method for visual inspection of reconstruction uncertainty. With these experiments we demonstrate successful application of PVR motion compensation to the whole uterus, the human fetus, and the human placenta.Comment: 10 pages, 13 figures, submitted to IEEE Transactions on Medical Imaging. v2: wadded funders acknowledgements to preprin

    Joint Motion Deblurring and Superresolution from Single Blurry Image

    Get PDF
    Currently superresolution from a motion blurred image still remains a challenging task. The conventional approach, which preprocesses the blurry low resolution (LR) image with a deblurring algorithm and employs a superresolution algorithm, has the following limitation. The high frequency texture of the image is unavoidably lost in the deblurring process and this loss restricts the performance of the subsequent superresolution process. This paper presents a novel technique that performs motion deblurring and superresolution jointly from one single blurry image. The basic idea is to regularize the ill-posed reconstruction problem using an edge-preserving gradient prior and a sparse kernel prior. This method derives from an inverse problem approach under an efficient optimization scheme that alternates between blur kernel estimation and superresolving until convergence. Furthermore, this paper proposes a simple and efficient refinement formulation to remove artifacts and render better deblurred high resolution (HR) images. The improvements brought by the proposed combined framework are demonstrated by the processing results of both simulated and real-life images. Quantitative and qualitative results on challenging examples show that the proposed method outperforms the existing state-of-the-art methods and effectively eliminates motion blur and artifacts in the superresolved image

    The Devil is in the Decoder: Classification, Regression and GANs

    Full text link
    Many machine vision applications, such as semantic segmentation and depth prediction, require predictions for every pixel of the input image. Models for such problems usually consist of encoders which decrease spatial resolution while learning a high-dimensional representation, followed by decoders who recover the original input resolution and result in low-dimensional predictions. While encoders have been studied rigorously, relatively few studies address the decoder side. This paper presents an extensive comparison of a variety of decoders for a variety of pixel-wise tasks ranging from classification, regression to synthesis. Our contributions are: (1) Decoders matter: we observe significant variance in results between different types of decoders on various problems. (2) We introduce new residual-like connections for decoders. (3) We introduce a novel decoder: bilinear additive upsampling. (4) We explore prediction artifacts

    Fast artifacts-free image interpolation

    Get PDF
    In this paper we describe a novel general purpose image interpolation method based on the combination of two different procedures. First, an adaptive algorithm is applied interpolating locally pixel values along the direction where second order image derivative is lower. Then interpolated values are modified using an iterative refinement minimizing differences in second order image derivatives, maximizing second order derivative values and smoothing isolevel curves. The first algorithm itself provides edge preserving images that are measurably better than those obtained with similarly fast methods presented in the literature. The full method provides interpolated images with a ”natural ” appearance that do not present the artifacts affecting linear and nonlinear methods. Objective and subjective tests on a wide series of natural images clearly show the advantages of the proposed technique over existing approaches.
    corecore