793 research outputs found

    Suitability of ground-based SfM-MVS for monitoring glacial and periglacial processes

    Get PDF
    Photo-based surface reconstruction is rapidly emerging as an alternative survey technique to lidar (light detection and ranging) in many fields of geoscience fostered by the recent development of computer vision algorithms such as structure from motion (SfM) and dense image matching such as multi-view stereo (MVS). The objectives of this work are to test the suitability of the ground-based SfM-MVS approach for calculating the geodetic mass balance of a 2.1km2 glacier and for detecting the surface displacement of a neighbouring active rock glacier located in the eastern Italian Alps. The photos were acquired in 2013 and 2014 using a digital consumer-grade camera during single-day field surveys. Airborne laser scanning (ALS, otherwise known as airborne lidar) data were used as benchmarks to estimate the accuracy of the photogrammetric digital elevation models (DEMs) and the reliability of the method. The SfM-MVS approach enabled the reconstruction of high-quality DEMs, which provided estimates of glacial and periglacial processes similar to those achievable using ALS. In stable bedrock areas outside the glacier, the mean and the standard deviation of the elevation difference between the SfM-MVS DEM and the ALS DEM was-0.42 \ub1 1.72 and 0.03 \ub1 0.74 m in 2013 and 2014, respectively. The overall pattern of elevation loss and gain on the glacier were similar with both methods, ranging between-5.53 and + 3.48 m. In the rock glacier area, the elevation difference between the SfM-MVS DEM and the ALS DEM was 0.02 \ub1 0.17 m. The SfM-MVS was able to reproduce the patterns and the magnitudes of displacement of the rock glacier observed by the ALS, ranging between 0.00 and 0.48 m per year. The use of natural targets as ground control points, the occurrence of shadowed and low-contrast areas, and in particular the suboptimal camera network geometry imposed by the morphology of the study area were the main factors affecting the accuracy of photogrammetric DEMs negatively. Technical improvements such as using an aerial platform and/or placing artificial targets could significantly improve the results but run the risk of being more demanding in terms of costs and logistics

    Strategies for improving early detection and diagnosis of neovascular age-related macular degeneration

    No full text
    Treatment of the neovascular form of age-related macular degeneration (AMD) has been revolutionized by the introduction of such agents as ranibizumab, bevacizumab, and aflibercept. As a result, the incidence of legal blindness occurring secondary to AMD has fallen dramatically in recent years in many countries. While these agents have undoubtedly been successful in reducing visual impairment and blindness, patients with neovascular AMD typically lose some vision over time, and often lose the ability to read, drive, or perform other important activities of daily living. Efforts are therefore under way to develop strategies that allow for earlier detection and treatment of this disease. In this review, we begin by providing an overview of the rationale for, and the benefits of, early detection and treatment of neovascular AMD. To achieve this, we begin by providing an overview of the pathophysiology and natural history of choroidal neovascularization, before reviewing the evidence from both clinical trials and "real-world" outcome studies. We continue by highlighting an area that is often overlooked: the importance of patient education and awareness for early AMD detection. We conclude the review by reviewing an array of both established and emerging technologies for early detection of choroidal neovascularization, ranging from Amsler chart testing, to hyperacuity testing, to advanced imaging techniques, such as optical coherence tomography

    Correcciones para la presbicia : implicaciones ópticas, perceptuales y adaptativas

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Óptica y Optometría, leída el 18-05-2016Presbyopia is the physiological inability of the crystalline lens to accommodate for objects at near distance. While accommodative lenses are the ideal solutions for presbyopia, current optical solutions rely on providing an acceptable quality of vision at near and far distances. Optimization of the optical solutions rely on better understanding of how the visual system copes with the visual quality produced by the various optical solutions. The aim of this thesis is to study optical, visual and perceptual performance of different presbyopic corrections such as alternating vision, monovision and simultaneous vision, and to study the effect of adaptation on perceptual performances. Methods: We measured and corrected ocular aberrations using custom developed adaptive optics setup, used images blurred by real aberrations of different orientation and/or magnitude and measured the internal code for blur in eyes with long term differences in blur magnitude or orientation using a classification-image like technique. We later used numerically convolved images of different far/near energy and different near additions to study the short term adaptation to pure simultaneous vision using single stimulus detection and scoring tasks...La presbicia es la incapacidad del cristalino para enfocar objetos cercanos. Mientras que las lentes acomodativas son una buena solución para la presbicia, las soluciones más actuales se basan en una corrección aceptable de la visión cercana y lejana simultáneamente. La optimización de estas soluciones pasa por comprender cómo reacciona el sistema a las diferentes correcciones ópticas. El objetivo de esta tesis es el estudio óptico, visual y perceptual de diferentes correcciones a la presbicia como la visión alternante, la mono visión y la visión simultánea, y el estudio del efecto dela adaptación desde el punto de vista perceptual. MétodosSe han medido y corregido las aberraciones oculares mediante un sistema de óptica adaptativa de construcción propia y se han usado imágenes desenfocadas con aberraciones reales con diferentes magnitudes y/u orientaciones para medir el código interno de emborronamiento en los ojos para los diferentes desenfoques y orientaciones mediante métodos de clasificación de imágenes. Posteriormente se han usado imágenes convolucionadas numéricamente con diferentes proporciones en las energías del enfoque cercano o lejano y con diferentes adiciones para estudiar laadaptación a corto plazo en la visión simultánea pura a través de la detección y valoración de estímulos individuales...Fac. de Óptica y OptometríaTRUEunpu

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Varieties of Attractiveness and their Brain Responses

    Get PDF

    A Tutorial on Learning Human Welder\u27s Behavior: Sensing, Modeling, and Control

    Get PDF
    Human welder\u27s experiences and skills are critical for producing quality welds in manual GTAW process. Learning human welder\u27s behavior can help develop next generation intelligent welding machines and train welders faster. In this tutorial paper, various aspects of mechanizing the welder\u27s intelligence are surveyed, including sensing of the weld pool, modeling of the welder\u27s adjustments and this model-based control approach. Specifically, different sensing methods of the weld pool are reviewed and a novel 3D vision-based sensing system developed at University of Kentucky is introduced. Characterization of the weld pool is performed and human intelligent model is constructed, including an extensive survey on modeling human dynamics and neuro-fuzzy techniques. Closed-loop control experiment results are presented to illustrate the robustness of the model-based intelligent controller despite welding speed disturbance. A foundation is thus established to explore the mechanism and transformation of human welder\u27s intelligence into robotic welding system. Finally future research directions in this field are presented

    Science of Facial Attractiveness

    Get PDF
    corecore