553 research outputs found

    Wi-Fi Fingerprinting for Indoor Positioning

    Get PDF
    Wireless Fidelity (Wi-Fi) Fingerprinting is a remarkable approach developed by modern science to detect the user’s location efficiently. Today, the Global Positioning System (GPS) is used to keep track of our current location for outdoor positioning. In GPS technology, satellite signals cannot reach indoor environments as they are shielded from obstructions so that indoor environments with a lack of Line of Sight (LoS) do not provide enough satellite signal accuracy. Since indoor environments are very difficult to track, thus, a wide variety of techniques for dealing with them have been suggested. The best way to offer an indoor positioning service with the current technology is Wi-Fi since the most commercial infrastructure is well equipped with Wi-Fi routers. For indoor positioning systems (IPS), Wi-Fi fingerprinting approaches are being extremely popular. In this paper, all the approaches for Wi-Fi fingerprinting have been reviewed for indoor position localization. Related to Wi-Fi fingerprinting, most of the algorithms have been interpreted and the previous works of other researchers have been critically analyzed in this paper to get a clear view of the Wi-Fi fingerprinting process

    Wi-Fi Fingerprinting for Indoor Positioning

    Get PDF
    Wireless Fidelity (Wi-Fi) Fingerprinting is a remarkable approach developed by modern science to detect the user’s location efficiently. Today, the Global Positioning System (GPS) is used to keep track of our current location for outdoor positioning. In GPS technology, satellite signals cannot reach indoor environments as they are shielded from obstructions so that indoor environments with a lack of Line of Sight (LoS) do not provide enough satellite signal accuracy. Since indoor environments are very difficult to track, thus, a wide variety of techniques for dealing with them have been suggested. The best way to offer an indoor positioning service with the current technology is Wi-Fi since the most commercial infrastructure is well equipped with Wi-Fi routers. For indoor positioning systems (IPS), Wi-Fi fingerprinting approaches are being extremely popular. In this paper, all the approaches for Wi-Fi fingerprinting have been reviewed for indoor position localization. Related to Wi-Fi fingerprinting, most of the algorithms have been interpreted and the previous works of other researchers have been critically analyzed in this paper to get a clear view of the Wi-Fi fingerprinting process

    Positioning Techniques with Smartphone Technology: Performances and Methodologies in Outdoor and Indoor Scenarios

    Get PDF
    Smartphone technology is widespread both in the academy and in the commercial world. Almost every people have today a smartphone in their pocket, that are not only used to call other people but also to share their location on social networks or to plan activities. Today with a smartphone we can compute our position using the sensors settled inside the device that may also include accelerometers, gyroscopes and magnetometers, teslameter, proximity sensors, barometer, and GPS/GNSS chipset. In this chapter we want to analyze the state-of-the-art of the positioning with smartphone technology, considering both outdoor and indoor scenarios. Particular attention will be paid to this last situation, where the accuracy can be improved fusing information coming from more than one sensor. In particular, we will investigate an innovative method of image recognition based (IRB) technology, particularly useful in GNSS denied environment, taking into account the two main problems that arise when the IRB positioning methods are considered: the first one is the optimization of the battery, that implies the minimization of the frame rate, and secondly the latencies due to image processing for visual search solutions, required by the size of the database with the 3D environment images

    Understanding collaborative workspaces:spatial affordances & time constraints

    Get PDF
    Abstract. This thesis presents a generic solution for indoor positioning and movement monitoring, positioning data collection and analysis with the aim of improving the interior design of collaborative workspaces. Since the nature of the work and the work attitude of employees varies in different workspaces, no general workspace layout can be applied to all situations. Tailoring workspaces according to the exact needs and requirements of the employees can improve collaboration and productivity. Here, an indoor positioning system based on Bluetooth Low Energy technology was designed and implemented in a pilot area (an IT company), and the position of the employees was monitored during a two months period. The pilot area consisted of an open workplace with workstations for nine employees and two sets of coffee tables, four meeting rooms, two coffee rooms and a soundproof phone booth. Thirteen remixes (BLE signal receivers) provided full coverage over the pilot area, while light durable BLE beacons, which were carried by employees acted as BLE signal broadcasters. The RSSIs of the broadcasted signals from the beacons were recorded by each remix within the range of the signal and the gathered data was stored in a database. The gathered RSSI data was normalized to decrease the effect of workspace obstacles on the signal strength. To predict the position of beacons based on the recorded RSSIs, a few approaches were tested, and the most accurate one was chosen, which provided an above 95% accuracy in predicting the position of each beacon every 3 minutes. This approach was a combination of fingerprinting with a Machine Learning-based Random Forest Classifier. The obtained position results were then used to extract various information about the usage pattern of different workspace areas to accurately access the current layout and the needs of the employees

    WiFiPoz -- an accurate indoor positioning system

    Get PDF
    Location based services are becoming an important part of life. Wide adoption of GPS in mobile devices combined with cellular networks has practically solved the problem of outdoor localization needs. The problem of locating an indoor user has being studied only recently. Much research contributed to the innovative concept of an indoor positioning system. By analyzing different technologies and algorithms, this thesis concluded that, considering a trade-off between accuracy and cost, a Wi-Fi based Fingerprint method is proved to be the most promising approach to determine the location of a mobile device. However, the Fingerprint method works in two phases-an offline training phase (collection of Received Signal Strength signatures) and an online phase in which data from the first phase is used to determine the current position of a mobile user. The number of training points in a certain area has a direct impact on the accuracy of the system. As a result, the offline phase is a tedious and cumbersome process and the positioning systems are only as accurate as the offline training phase has been detailed. Moreover, the offline phase must be repeated every time a change in the environment occurs. To avoid these limitations, we focus on improving the accuracy of the indoor positioning system, without increasing the number of training points. This thesis presents a Wi-Fi based system for locating a user inside a building. The system is named WiFiPoz, which means Wi-Fi positioning system based on the zoning method. WiFiPoz has a novel approach to Fingerprint method that incorporates Propagation and zoning methods. Experimental results show that WiFiPoz is highly efficient both in accuracy and costs. Compared to traditional Fingerprint methods, with the optimization of the accuracy of the location estimation, WiFiPoz reduces the number of training points. This feature makes it possible to quickly adapt to changes in the environment. In order to explore another possible solution, this thesis also developed, implemented and tested an indoor positioning system named GIS (Geometric Information based positioning System), which is based on a model proposed by another researcher. Several experiments were run in the offline phase and results were compared between the traditional Fingerprint method, GIS and proposed WiFiPoz. We concluded that WiFiPoz is a more efficient and simple way to increase the accuracy of the location determination with fewer training points --Document

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Fingerprint Database Enhancement by Applying Interpolation and Regression Techniques for IoT-based Indoor Localization

    Get PDF
    Most applied indoor localization is based on distance and fingerprint techniques. The distance-based technique converts specific parameters to a distance, while the fingerprint technique stores parameters as the fingerprint database. The widely used Internet of Things (IoT) technologies, e.g., Wi-Fi and ZigBee, provide the localization parameters, i.e., received signal strength indicator (RSSI). The fingerprint technique advantages over the distance-based method as it straightforwardly uses the parameter and has better accuracy. However, the burden in database reconstruction in terms of complexity and cost is the disadvantage of this technique. Some solutions, i.e., interpolation, image-based method, machine learning (ML)-based, have been proposed to enhance the fingerprint methods. The limitations are complex and evaluated only in a single environment or simulation. This paper proposes applying classical interpolation and regression to create the synthetic fingerprint database using only a relatively sparse RSSI dataset. We use bilinear and polynomial interpolation and polynomial regression techniques to create the synthetic database and apply our methods to the 2D and 3D environments. We obtain an accuracy improvement of 0.2m for 2D and 0.13m for 3D by applying the synthetic database. Adding the synthetic database can tackle the sparsity issues, and the offline fingerprint database construction will be less burden. Doi: 10.28991/esj-2021-SP1-012 Full Text: PD

    An Overview on IEEE 802.11bf: WLAN Sensing

    Full text link
    With recent advancements, the wireless local area network (WLAN) or wireless fidelity (Wi-Fi) technology has been successfully utilized to realize sensing functionalities such as detection, localization, and recognition. However, the WLANs standards are developed mainly for the purpose of communication, and thus may not be able to meet the stringent requirements for emerging sensing applications. To resolve this issue, a new Task Group (TG), namely IEEE 802.11bf, has been established by the IEEE 802.11 working group, with the objective of creating a new amendment to the WLAN standard to meet advanced sensing requirements while minimizing the effect on communications. This paper provides a comprehensive overview on the up-to-date efforts in the IEEE 802.11bf TG. First, we introduce the definition of the 802.11bf amendment and its formation and standardization timeline. Next, we discuss the WLAN sensing use cases with the corresponding key performance indicator (KPI) requirements. After reviewing previous WLAN sensing research based on communication-oriented WLAN standards, we identify their limitations and underscore the practical need for the new sensing-oriented amendment in 802.11bf. Furthermore, we discuss the WLAN sensing framework and procedure used for measurement acquisition, by considering both sensing at sub-7GHz and directional multi-gigabit (DMG) sensing at 60 GHz, respectively, and address their shared features, similarities, and differences. In addition, we present various candidate technical features for IEEE 802.11bf, including waveform/sequence design, feedback types, as well as quantization and compression techniques. We also describe the methodologies and the channel modeling used by the IEEE 802.11bf TG for evaluation. Finally, we discuss the challenges and future research directions to motivate more research endeavors towards this field in details.Comment: 31 pages, 25 figures, this is a significant updated version of arXiv:2207.0485
    • …
    corecore