3,275 research outputs found

    Archon Genomics X PRIZE Validation Protocol

    Get PDF
    This document is a collective assembly of techniques designed to test the quality and accuracy of 100 whole human genome sequences resulting from the $10 Million Archon Genomics X PRIZE (AGXP) competition. The purpose of this article is to enlist constructive criticism from the genomic and genetic community on the outlined approaches. The intent for the final version of this Validation Protocol is to become a useful standard by which to gauge the capabilities of whole genome sequencing technologies that emerge even after 2012

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    Genome sequence of the Ornithopus/Lupinus-nodulating Bradyrhizobium sp. strain WSM471

    Get PDF
    Bradyrhizobium sp. strain WSM471 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from an effective nitrogen-(N-2) fixing root nodule formed on the annual legume Ornithopus pinnatus (Miller) Druce growing at Oyster Harbour, Albany district, Western Australia in 1982. This strain is in commercial production as an inoculant for Lupinus and Ornithopus. Here we describe the features of Bradyrhizobium sp. strain WSM471, together with genome sequence information and annotation. The 7,784,016 bp high-quality-draft genome is arranged in 1 scaffold of 2 contigs, contains 7,372 protein-coding genes and 58 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program

    Genome Resources for Climateā€Resilient Cowpea, an Essential Crop for Food Security

    Get PDF
    Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and droughtā€prone climates, and a primary source of protein in subā€Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97Kā€499ā€35 include a wholeā€genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five biā€parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limitedā€input smallā€holder farming and climate stress

    Next-generation sequencing (NGS) in the microbiological world : how to make the most of your money

    Get PDF
    The Sanger sequencing method produces relatively long DNA sequences of unmatched quality and has been considered for long time as the gold standard for sequencing DNA. Many improvements of the Sanger method that culminated with fluorescent dyes coupled with automated capillary electrophoresis enabled the sequencing of the first genomes. Nevertheless, using this technology to sequence whole genomes was costly, laborious and time consuming even for genomes that are relatively small in size. A major technological advance was the introduction of next-generation sequencing (NGS) pioneered by 454 Life Sciences in the early part of the 21th century. NGS allowed scientists to sequence thousands to millions of DNA molecules in a single machine run. Since then, new NGS technologies have emerged and existing NGS platforms have been improved, enabling the production of genome sequences at an unprecedented rate as well as broadening the spectrum of NGS applications. The current affordability of generating genomic information, especially with microbial samples, has resulted in a false sense of simplicity that belies the fact that many researchers still consider these technologies a black box. In this review, our objective is to identify and discuss four steps that we consider crucial to the success of any NGS-related project. These steps are: (1) the definition of the research objectives beyond sequencing and appropriate experimental planning, (2) library preparation, (3) sequencing and (4) data analysis. The goal of this review is to give an overview of the process, from sample to analysis, and discuss how to optimize your resources to achieve the most from your NGS-based research. Regardless of the evolution and improvement of the sequencing technologies, these four steps will remain relevant
    • ā€¦
    corecore