956,999 research outputs found

    UK open source crime data: accuracy and possibilities for research

    Get PDF
    In the United Kingdom, since 2011 data regarding individual police recorded crimes have been made openly available to the public via the police.uk website. To protect the location privacy of victims these data are obfuscated using geomasking techniques to reduce their spatial accuracy. This paper examines the spatial accuracy of the police.uk data to determine at what level(s) of spatial resolution – if any – it is suitable for analysis in the context of theory testing and falsification, evaluation research, or crime analysis. Police.uk data are compared to police recorded data for one large metropolitan Police Force and spatial accuracy is quantified for four different levels of geography across five crime types. Hypotheses regarding systematic errors are tested using appropriate statistical approaches, including methods of maximum likelihood. Finally, a “best-fit” statistical model is presented to explain the error as well as to develop a model that can correct it. The implications of the findings for researchers using the police.uk data for spatial analysis are discussed

    A spatial accuracy assessment of an alternative circular scan method for Kulldorff's spatial scan statistic

    Get PDF
    This paper concerns the Bernoulli version of Kulldorff’s spatial scan statistic, and how accurately it identifies the exact centre of approximately circular regions of increased spatial density in point data. We present an alternative method of selecting circular regions that appears to give greater accuracy. Performance is tested in an epidemiological context using manifold synthetic case-control datasets. A small, but statistically significant, improvement is reported. The power of the alternative method is yet to be assessed

    Interference between postural control and mental task performance in patients with vestibular disorder and healthy controls

    No full text
    OBJECTIVES - To determine whether interference between postural control and mental task performance in patients with balance system impairment and healthy subjects is due to general capacity limitations, motor control interference, competition for spatial processing resources, or a combination of these.METHOD - Postural stability was assessed in 48 patients with vestibular disorder and 24 healthy controls while they were standing with eyes closed on (a) a stable and (b) a moving platform. Mental task performance was measured by accuracy and reaction time on mental tasks, comprising high and low load, spatial and non-spatial tasks. Interference between balancing and performing mental tasks was assessed by comparing baseline (single task) levels of sway and mental task performance with levels while concurrently balancing and carrying out mental tasks.RESULTS - As the balancing task increased in difficulty, reaction times on both low load mental tasks grew progressively longer and accuracy on both high load tasks declined in patients and controls. Postural sway was essentially unaffected by mental activity in patients and controls.CONCLUSIONS - It is unlikely that dual task interference between balancing and mental activity is due to competition for spatial processing resources, as levels of interference were similar in patients with vestibular disorder and healthy controls, and were also similar for spatial and non-spatial tasks. Moreover, the finding that accuracy declined on the high load tasks when balancing cannot be attributed to motor control interference, as no motor control processing is involved in maintaining accuracy of responses. Therefore, interference between mental activity and postural control can be attributed principally to general capacity limitations, and is hence proportional to the attentional demands of both tasks

    Effects of spatial ability on multi-robot control tasks

    Get PDF
    Working with large teams of robots is a very complex and demanding task for any operator and individual differences in spatial ability could significantly affect that performance. In the present study, we examine data from two earlier experiments to investigate the effects of ability for perspective-taking on performance at an urban search and rescue (USAR) task using a realistic simulation and alternate displays. We evaluated the participants' spatial ability using a standard measure of spatial orientation and examined the divergence of performance in accuracy and speed in locating victims, and perceived workload. Our findings show operators with higher spatial ability experienced less workload and marked victims more precisely. An interaction was found for the experimental image queue display for which participants with low spatial ability improved significantly in their accuracy in marking victims over the traditional streaming video display. Copyright 2011 by Human Factors and Ergonomics Society, Inc. All rights reserved

    Application of spectral and spatial indices for specific class identification in Airborne Prism EXperiment (APEX) imaging spectrometer data for improved land cover classification

    Get PDF
    Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches fail to process data along many contiguous bands due to inadequate training samples. Another challenge of successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed pixels, with an objective to improve the accuracy of class identification. In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the classification accuracy using the Possibilistic c–Means (PCM) algorithm. This was used for the formulation of spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes. Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific class information. The classification of the dataset was performed in two stages; spectral and a combination of spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy, while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved, against 65% (spectral indices only) and 59.50% (optimally determined principal component

    Adaptive kNN using Expected Accuracy for Classification of Geo-Spatial Data

    Full text link
    The k-Nearest Neighbor (kNN) classification approach is conceptually simple - yet widely applied since it often performs well in practical applications. However, using a global constant k does not always provide an optimal solution, e.g., for datasets with an irregular density distribution of data points. This paper proposes an adaptive kNN classifier where k is chosen dynamically for each instance (point) to be classified, such that the expected accuracy of classification is maximized. We define the expected accuracy as the accuracy of a set of structurally similar observations. An arbitrary similarity function can be used to find these observations. We introduce and evaluate different similarity functions. For the evaluation, we use five different classification tasks based on geo-spatial data. Each classification task consists of (tens of) thousands of items. We demonstrate, that the presented expected accuracy measures can be a good estimator for kNN performance, and the proposed adaptive kNN classifier outperforms common kNN and previously introduced adaptive kNN algorithms. Also, we show that the range of considered k can be significantly reduced to speed up the algorithm without negative influence on classification accuracy

    Spatial adaptation procedures on tetrahedral meshes for unsteady aerodynamic flow calculations

    Get PDF
    Spatial adaptation procedures for the accurate and efficient solution of steady and unsteady inviscid flow problems are described. The adaptation procedures were developed and implemented within a three-dimensional, unstructured-grid, upwind-type Euler code. These procedures involve mesh enrichment and mesh coarsening to either add points in high gradient regions of the flow or remove points where they are not needed, respectively, to produce solutions of high spatial accuracy at minimal computational cost. A detailed description of the enrichment and coarsening procedures are presented and comparisons with experimental data for an ONERA M6 wing and an exact solution for a shock-tube problem are presented to provide an assessment of the accuracy and efficiency of the capability. Steady and unsteady results, obtained using spatial adaptation procedures, are shown to be of high spatial accuracy, primarily in that discontinuities such as shock waves are captured very sharply
    • 

    corecore