115 research outputs found

    Cross layer optimization in 4G Wireless mesh networks

    Get PDF
    Wireless networks have been rapidly evolving over the past two decades. It is foreseen that Fourth generation (4G) wireless systems will involve the integration of wireless mesh networks and the 3G wireless systems such as WCDMA. Moreover their wireless mesh routers will provide service to wireless local networks (WLANs) and possibly incorporate MIMO system and smart admission control policies among others. This integration will not only help the service providers cost effectiveness and users connectivities but will also improve and guarantee the QoS criteria. On the other hand, cross layer design has emerged as a new and major thrust in improving the quality of service (QoS) of wireless networks. Cross layer design involves the interaction of various layers of the network hierarchy which could further improve the QoS of the 4G integrated networks. In this work we seek new techniques for improving the overall QoS of integrated 4G systems. Towards this objective we start with the local low tier WLAN access. We then investigate CDMA alternatives to the TDMA access for wireless mesh networks. Cross layer design in wireless mesh networks is then pursued. In the first phase of this thesis a new access mechanism for WLANs is developed, in which users use an optimum transmission probability obtained by estimating the number of stations from the traffic conditions in a sliding window fashion, thereby increasing the throughput compared to the standard DCF and RTS/CTS mechanism while maintaining the same fairness and the delay performance. In the second phase we introduce a code division multiple access/Time division duplex technique CDMA/TDD for wireless mesh networks, we outline the transmitter and receiver for the relay nodes and evaluate the efficiency, delay and delay jitter performances. This CDMA based technique is more amenable to integrating the two systems (Mesh networks and WCDMA or CDMA 2000 of3G). We compare these results with the TDMA operation and through analysis we prove that the CDMA system outperforms the TDMA counterparts. In the third phase we proceed to an instance of cross layer optimized networks, where we develop an overall optimization routine that finds simultaneously the best route and the best capacity allocation to various nodes. This optimization routine minimizes the average end to end packet delay over all calls subject to various contraints. In the process we use a new adaptive version of Spatial TDMA as a platform for comparison purposes of the MAC techniques involved in the cross layer design. In this phase we also combine CDMA/TDD and optimum routing for cross layer design in wireless mesh networks. We compare the results of the CDMA/TDD system with results obtained from the STDMA system. In our analysis we consider the parallel transmissions of mesh nodes in a mesh topology. These parallel transmissions will increase the capacity resulting in a higher throughput with a lower delay. This will allow the service providers to accommodate more users in their system which will obviously reduce the colt and the end users will enjoy a better service paying a lower amount

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    MAC/PHY Co-Design of CSMA Wireless Networks Using Software Radios.

    Full text link
    In the past decade, CSMA-based protocols have spawned numerous network standards (e.g., the WiFi family), and played a key role in improving the ubiquity of wireless networks. However, the rapid evolution of CSMA brings unprecedented challenges, especially the coexistence of different network architectures and communications devices. Meanwhile, many intrinsic limitations of CSMA have been the main obstacle to the performance of its derivatives, such as ZigBee, WiFi, and mesh networks. Most of these problems are observed to root in the abstract interface of the CSMA MAC and PHY layers --- the MAC simply abstracts the advancement of PHY technologies as a change of data rate. Hence, the benefits of new PHY technologies are either not fully exploited, or they even may harm the performance of existing network protocols due to poor interoperability. In this dissertation, we show that a joint design of the MAC/PHY layers can achieve a substantially higher level of capacity, interoperability and energy efficiency than the weakly coupled MAC/PHY design in the current CSMA wireless networks. In the proposed MAC/PHY co-design, the PHY layer exposes more states and capabilities to the MAC, and the MAC performs intelligent adaptation to and control over the PHY layer. We leverage the reconfigurability of software radios to design smart signal processing algorithms that meet the challenge of making PHY capabilities usable by the MAC layer. With the approach of MAC/PHY co-design, we have revisited the primitive operations of CSMA (collision avoidance, carrier signaling, carrier sensing, spectrum access and transmitter cooperation), and overcome its limitations in relay and broadcast applications, coexistence of heterogeneous networks, energy efficiency, coexistence of different spectrum widths, and scalability for MIMO networks. We have validated the feasibility and performance of our design using extensive analysis, simulation and testbed implementation.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/95944/1/xyzhang_1.pd

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of-the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: quality-of-service and video communication, routing protocol and cross-layer design. A few interesting problems about security and delay-tolerant networks are also discussed. This book is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Cooperative Communications in Ad Hoc Networks

    Get PDF
    Les techniques de communication coopĂ©ratives ont Ă©tĂ© proposĂ©es pour amĂ©liorer la qualitĂ© des signaux reçus par les terminaux sans fil grĂące au principe de diversitĂ© spatiale. Cette propriĂ©tĂ© est obtenue par une duplication du signal, envoyĂ© par l’émetteur au niveau d’un terminal relais situĂ© entre l’émetteur et le rĂ©cepteur. Les travaux de recherche menĂ©s en communications coopĂ©ratives concernent deux domaines principaux: certains traitent la transmission physique alors que d’autres sont Ă©tudient l’interaction de la couche physique avec les couches protocolaires supĂ©rieures, en particulier les niveaux MAC (Medium Access Control) et rĂ©seau. Si ces domaines de recherche sont gĂ©nĂ©ralement sĂ©parĂ©s, des Ă©tudes conjointes s’avĂšrent nĂ©cessaires pour obtenir des systĂšmes coopĂ©ratifs implantables. C’est dans ce contexte que se situent les travaux de la thĂšse avec, comme cadre applicatif, les rĂ©seaux ad hoc. En premier lieu, dans la mesure oĂč il n’existe pas de modĂšle complet de systĂšme coopĂ©ratif, un cadre de modĂ©lisation original est proposĂ© pour reprĂ©senter le fonctionnement d’un systĂšme coopĂ©ratif, sa mise en place et son fonctionnement. Une caractĂ©ristique du modĂšle est de faire abstraction des couches protocolaires. Cette façon de procĂ©der permet d’analyser de façon similaire diffĂ©rentes solutions proposĂ©es dans la littĂ©rature. De plus, ce modĂšle facilite la conception de solutions coopĂ©ratives, en particulier la conception du processus de mise en place du systĂšme de coopĂ©ration qui initialise les rĂŽles de relais, destinataire et source en fonctionnement coopĂ©ratif. Le modĂšle de systĂšme coopĂ©ratif est utilisĂ© pour la conception d’une solution de transmission coopĂ©rative adaptative oĂč le relais agit en tant que proxy entre la source et le destinataire. L’intĂ©rĂȘt de notre proposition, ProxyCoop, par rapport Ă  d’autres propositions, est d’ĂȘtre compatible avec le protocole IEEE 802.11 que ce soit dans son mode de base ou dans son mode optionnel. Pour chaque trame, le mode de transmission Ă  la source est dynamiquement dĂ©fini soit en mode proxy coopĂ©ratif soit en mode non coopĂ©ratif, et ce en fonction de la rĂ©ception ou la non rĂ©ception d’un acquittement du destinataire. Les rĂ©sultats de simulation montrent, sous certaines conditions, une amĂ©lioration des performances en termes de nombre de trames effectivement reçues. Le nombre de retransmissions dues Ă  des trames reçues erronĂ©es est diminuĂ©, et les transmissions en mode multi saut, coĂ»teuses en temps et en bande passante sont Ă©galement diminuĂ©es. Les conditions favorables Ă  la coopĂ©ration sont dĂ©pendantes de la qualitĂ© et de l’accessibilitĂ© du canal. Une mĂ©thode pour la mise en place du systĂšme coopĂ©ratif est Ă©galement proposĂ©e. Elle repose sur l’utilisation d’un protocole standard de routage pour rĂ©seaux ad hoc, AODV. Les Ă©valuations de performances indiquent que la mise en place du systĂšme de coopĂ©ration coĂ»te peu en termes de bande passante, les performances du systĂšme (mise en place et fonctionnement) sont supĂ©rieures Ă  celles d’un systĂšme non-coopĂ©ratif, pour des conditions donnĂ©es. Finalement, l’application de la solution proposĂ©e Ă  un rĂ©seau ad hoc spĂ©cifique, un rĂ©seau maillĂ© (mesh) conforme au standard IEEE 802.11s illustre oĂč et comment dĂ©ployer la solution proposĂ©e. ABSTRACT : Cooperative communication techniques have been proposed in order to improve the quality of the received signals at the receivers by using the diversity added by duplication of signals sent by relay terminals situated between each transmission pair. Researches related to cooperative communication can be categorized into two fields; Cooperative transmissions and Cooperative setup. The first research field concerns with cooperative transmission techniques in the physical layer while the second research field concerns with issues on inter-layer interaction between cooperative transmissions in the physical layer to protocols in the upper layers (especially the MAC layer and the network layer). These research topics have been separately concerned but, for implementations, they have to work together. Since there is not any existing common frame work to describe entire functions in cooperative communication, we proposed an original framework of cooperative network at the system level called “Cooperative Network Model”. The model does not reflect the protocol layering; thus, we can generalize the cooperation process and obtain an analysis that is available for many solutions. For validity, the proposed model can clearly illustrate and systematically describe existing cooperative setup protocols. In addition, the proposed cooperative network model facilitates us to find and to solve problems in cooperative designs; especially in cooperative setup, which is in charge on the initiation of the terminal’s role (i.e., a source, a relay, and a destination terminal). Thus, we believe that this model can facilitate the design and updating of existing and future propositions in this domain. The cooperative network protocol is used to design an adaptive cooperative transmission called Proxy Cooperative Transmission. In contrast to other adaptive cooperative transmission techniques, our proposition is compatible to both of the basic access mode and the optional access mode of IEEE 802.11 Medium Access Control (MAC) protocol. The transmission mode for each data frame is adaptively switched between a proxy cooperative mode and a non-cooperative mode based on the absence of acknowledge (ACK) frame. Simulation results show that transmission performance is improved by decreasing the number of re-transmissions due to frame errors; thus, chances of multi-hop mode transitions that are costly in time and bandwidth are alleviated. Then, in order to fulfill ProxyCoop communications in part of cooperative setup, we propose a cooperative setup method called “Proxy Cooperative Setup”. The proposition is based on a routing standard protocol for ad hoc networks, AODV, so that it could be easily deployed. The impacts of ProxyCoopSetup when it works with ProxyCoop transmissions have been studied. From simulation results, it shows that ProxyCoop transmissions with ProxyCoopSetup has similar performance to the ProxyCoop transmissions without ProxyCoopSetup. Finally, when the implementation of the proxy cooperative communication and how it can be integrated on existing networks have been considered, it is shown that the design of proxy cooperative communication is also valuable for the 802.11s WLAN Mesh Network environments

    Cross-Layer Design for QoS Routing in Multi-Hop Wireless Networks

    Get PDF
    Mobile Ad Hoc Networks (MANETs) are gaining increasing popularity in recent years because of their ease of deployment. They are distributed, dynamic, and self-configurable without infrastructure support. Routing in ad hoc networks is a challenging task because of the MANET dynamic nature. Hence, researchers were focused in designing best-effort distributed and dynamic routing protocols to ensure optimum network operations in an unpredictable wireless environment. Nowadays, there is an increased demand on multimedia applications (stringent delay and reliability requirements), which makes a shift from best-effort services to Quality of Services. Actually, the challenge in wireless ad hoc networks is that neighbor nodes share the same channel and they take part in forwarding packets. Therefore, the total effective channel capacity is not only limited by the raw channel capacity but is also limited by the interactions and interferences among neighboring nodes. Thus, such factors should be taken in consideration in order to offer QoS routing. While, some of the distributed QoS route selection algorithms assume the availability of such information, others propose mechanisms to estimate them. The goals of this thesis are: (i) to analyze the performance of IEEE 802.11 MAC mechanism in non-saturation conditions, (ii) to use the analysis in the context of multi-hop ad hoc networks, (iii) to derive theoretical limits for nodes performance in multi-hop ad hoc networks, (iv) to use the multi-hop analysis in QoS route selection. We start the thesis by proposing a discrete-time 3D Markov chain model to analyze the saturation performance of the RTS/CTS access mode. This model integrates the backoff countdown process, retransmission retry limits, and transmission errors into one model. The impact of system parameters (e.g., number of nodes, packet size, retry limits, and BERs) are analyzed. Next, we extend the 3D model to analyze the performance under non-saturation conditions and finite buffer capacity using two different approaches. First, we extend the 3D model into a 4D model to integrate the transmission buffer behavior. Second, we replace the 4D model by an M/G/1/K queueing system model with independent samples from the saturation analysis. The latter model gives similar results as the former but with a reduction in the analysis complexity. Next and by means of the non-saturation analysis, we proposed an approximate mathematical model for multi-hop ad hoc networks. Furthermore, we proposed an iterative mechanism to estimate the throughput in the presence of multiple flows. Finally, we used the multi-hop analysis to propose a QoS route selection algorithm. In this algorithm, we concentrate on the throughput as a QoS parameter. However, the proposed algorithm is valid to be used with other QoS parameters, such as packet delay, packet loss probability, and fairness. Analytical and simulation results show the deficiency of the current route selection algorithm in AODV and at the same time verifies the need for QoS route selection algorithms

    Investigation of Vehicle-to-Everything (V2X) Communication for Autonomous Control of Connected Vehicles

    Get PDF
    Autonomous Driving Vehicles (ADVs) has received considerable attention in recent years by academia and industry, bringing about a paradigm shift in Intelligent Transportation Systems (ITS), where vehicles operate in close proximity through wireless communication. It is envisioned as a promising technology for realising efficient and intelligent transportation systems, with potential applications for civilian and military purposes. Vehicular network management for ADVs is challenging as it demands mobility, location awareness, high reliability, and low latency data traffic. This research aims to develop and implement vehicular communication in conjunction with a driving algorithm for ADVs feedback control system with a specific focus on the safe displacement of vehicle platoon while sensing the surrounding environment, such as detecting road signs and communicate with other road users such as pedestrian, motorbikes, non-motorised vehicles and infrastructure. However, in order to do so, one must investigate crucial aspects related to the available technology, such as driving behaviour, low latency communication requirement, communication standards, and the reliability of such a mechanism to decrease the number of traffic accidents and casualties significantly. To understand the behaviour of wireless communication compared to the theoretical data rates, throughput, and roaming behaviour in a congested indoor line-of-sight heterogeneous environment, we first carried out an experimental study for IEEE 802.11a, 802.11n and 802.11ac standards in a 5 GHz frequency spectrum. We validated the results with an analytical path loss model as it is essential to understand how the client device roams or decides to roam from one Access Point to another and vice-versa. We observed seamless roaming between the tested protocols irrespective of their operational environment (indoor or outdoor); their throughput efficiency and data rate were also improved by 8-12% when configured with Short Guard Interval (SGI) of 400ns compared to the theoretical specification of the tested protocols. Moreover, we also investigated the Software-Defined Networking (SDN) for vehicular communication and compared it with the traditional network, which is generally incorporated vertically where control and data planes are bundled collectively. The SDN helped gain more flexibility to support multiple core networks for vehicular communication and tackle the potential challenges of network scalability for vehicular applications raised by the ADVs. In particular, we demonstrate that the SDN improves throughput efficiency by 4% compared to the traditional network while ensuring efficient bandwidth and resource management. Finally, we proposed a novel data-driven coordination model which incorporates Vehicle-to-Everything (V2X) communication and Intelligent Driver Model (IDM), together called V2X Enabled Intelligent Driver Model (VX-IDM). Our model incorporates a Car-Following Model (CFM), i.e., IDM, to model a vehicle platoon in an urban and highway traffic scenario while ensuring the vehicle platoon's safety with the integration of IEEE 802.11p Vehicle-to-Infrastructure (V2I) communication scheme. The model integrates the 802.11p V2I communication channel with the IDM in MATLAB using ODE‐45 and utilises the 802.11p simulation toolbox for configuring vehicular channels. To demonstrate model functionality in urban and highway traffic environments, we developed six case studies. We also addressed the heterogeneity issue of wireless networks to improve the overall network reliability and efficiency by estimating the Signal-to-Noise Ratio (SNR) parameters for the platoon vehicle's displacement and location on the road from Road-Side-Units (RSUs). The simulation results showed that inter-vehicle spacing could be steadily maintained at a minimum safe value at all the time. Moreover, the model has a fault-tolerant mechanism that works even when communication with infrastructure is interrupted or unavailable, making the VX-IDM model collision-free
    • 

    corecore