16,178 research outputs found

    Accounting for the Role of Long Walks on Networks via a New Matrix Function

    Get PDF
    We introduce a new matrix function for studying graphs and real-world networks based on a double-factorial penalization of walks between nodes in a graph. This new matrix function is based on the matrix error function. We find a very good approximation of this function using a matrix hyperbolic tangent function. We derive a communicability function, a subgraph centrality and a double-factorial Estrada index based on this new matrix function. We obtain upper and lower bounds for the double-factorial Estrada index of graphs, showing that they are similar to those of the single-factorial Estrada index. We then compare these indices with the single-factorial one for simple graphs and real-world networks. We conclude that for networks containing chordless cycles---holes---the two penalization schemes produce significantly different results. In particular, we study two series of real-world networks representing urban street networks, and protein residue networks. We observe that the subgraph centrality based on both indices produce significantly different ranking of the nodes. The use of the double factorial penalization of walks opens new possibilities for studying important structural properties of real-world networks where long-walks play a fundamental role, such as the cases of networks containing chordless cycles

    Communicability betweenness in complex networks

    Get PDF
    Betweenness measures provide quantitative tools to pick out fine details from the massive amount of interaction data that is available from large complex networks. They allow us to study the extent to which a node takes part when information is passed around the network. Nodes with high betweenness may be regarded as key players that have a highly active role. At one extreme, betweenness has been defined by considering information passing only through the shortest paths between pairs of nodes. At the other extreme, an alternative type of betweenness has been defined by considering all possible walks of any length. In this work, we propose a betweenness measure that lies between these two opposing viewpoints. We allow information to pass through all possible routes, but introduce a scaling so that longer walks carry less importance. This new definition shares a similar philosophy to that of communicability for pairs of nodes in a network, which was introduced by Estrada and Hatano [E. Estrada, N. Hatano, Phys. Rev. E 77 (2008) 036111]. Having defined this new communicability betweenness measure, we show that it can be characterized neatly in terms of the exponential of the adjacency matrix. We also show that this measure is closely related to a Fréchet derivative of the matrix exponential. This allows us to conclude that it also describes network sensitivity when the edges of a given node are subject to infinitesimally small perturbations. Using illustrative synthetic and real life networks, we show that the new betweenness measure behaves differently to existing versions, and in particular we show that it recovers meaningful biological information from a proteinprotein interaction network

    Quantum Navigation and Ranking in Complex Networks

    Get PDF
    Complex networks are formal frameworks capturing the interdependencies between the elements of large systems and databases. This formalism allows to use network navigation methods to rank the importance that each constituent has on the global organization of the system. A key example is Pagerank navigation which is at the core of the most used search engine of the World Wide Web. Inspired in this classical algorithm, we define a quantum navigation method providing a unique ranking of the elements of a network. We analyze the convergence of quantum navigation to the stationary rank of networks and show that quantumness decreases the number of navigation steps before convergence. In addition, we show that quantum navigation allows to solve degeneracies found in classical ranks. By implementing the quantum algorithm in real networks, we confirm these improvements and show that quantum coherence unveils new hierarchical features about the global organization of complex systems.Comment: title changed, more real networks analyzed, version published in scientific report

    Which Sectors of a Modern Economy are most Central?

    Get PDF
    We analyze input-output matrices for a wide set of countries as weighted directed networks. These graphs contain only 47 nodes, but they are almost fully connected and many have nodes with strong self-loops. We apply two measures: random walk centrality and one based on count-betweenness. Our findings are intuitive. For example, in Luxembourg the most central sector is “Finance and Insurance” and the analog in Germany is “Wholesale and Retail Trade” or “Motor Vehicles”, according to the measure. Rankings of sectoral centrality vary by country. Some sectors are often highly central, while others never are. Hierarchical clustering reveals geographical proximity and similar development status.
    • …
    corecore