6,347 research outputs found

    The Aemulus Project III: Emulation of the Galaxy Correlation Function

    Get PDF
    Using the N-body simulations of the AEMULUS Project, we construct an emulator for the non-linear clustering of galaxies in real and redshift space. We construct our model of galaxy bias using the halo occupation framework, accounting for possible velocity bias. The model includes 15 parameters, including both cosmological and galaxy bias parameters. We demonstrate that our emulator achieves ~ 1% precision at the scales of interest, 0.1<r<10 h^{-1} Mpc, and recovers the true cosmology when tested against independent simulations. Our primary parameters of interest are related to the growth rate of structure, f, and its degenerate combination fsigma_8. Using this emulator, we show that the constraining power on these parameters monotonically increases as smaller scales are included in the analysis, all the way down to 0.1 h^{-1} Mpc. For a BOSS-like survey, the constraints on fsigma_8 from r<30 h^{-1} Mpc scales alone are more than a factor of two tighter than those from the fiducial BOSS analysis of redshift-space clustering using perturbation theory at larger scales. The combination of real- and redshift-space clustering allows us to break the degeneracy between f and sigma_8, yielding a 9% constraint on f alone for a BOSS-like analysis. The current AEMULUS simulations limit this model to surveys of massive galaxies. Future simulations will allow this framework to be extended to all galaxy target types, including emission-line galaxies.Comment: 14 pages, 8 figures, 1 table; submitted to ApJ; the project webpage is available at https://aemulusproject.github.io ; typo in Figure 7 and caption updated, results unchange

    Reconstruction of the cosmic microwave background lensing for Planck

    Get PDF
    Aims. We prepare real-life cosmic microwave background (CMB) lensing extraction with the forthcoming Planck satellite data by studying two systematic effects related to the foreground contamination: the impact of foreground residuals after a component separation on the lensed CMB map, and the impact of removing a large contaminated region of the sky. Methods. We first use the generalized morphological component analysis (GMCA) method to perform a component separation within a simplified framework, which allows a high statistics Monte-Carlo study. For the second systematic, we apply a realistic mask on the temperature maps and then restore them with a recently developed inpainting technique on the sphere. We investigate the reconstruction of the CMB lensing from the resultant maps using a quadratic estimator in the flat sky limit and on the full sphere. Results. We find that the foreground residuals from the GMCA method does not significantly alter the lensed signal, which is also true for the mask corrected with the inpainting method, even in the presence of point source residuals
    • …
    corecore