6 research outputs found

    Dynamic information and constraints in source and channel coding

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (p. 237-251).This thesis explore dynamics in source coding and channel coding. We begin by introducing the idea of distortion side information, which does not directly depend on the source but instead affects the distortion measure. Such distortion side information is not only useful at the encoder but under certain conditions knowing it at the encoder is optimal and knowing it at the decoder is useless. Thus distortion side information is a natural complement to Wyner-Ziv side information and may be useful in exploiting properties of the human perceptual system as well as in sensor or control applications. In addition to developing the theoretical limits of source coding with distortion side information, we also construct practical quantizers based on lattices and codes on graphs. Our use of codes on graphs is also of independent interest since it highlights some issues in translating the success of turbo and LDPC codes into the realm of source coding. Finally, to explore the dynamics of side information correlated with the source, we consider fixed lag side information at the decoder. We focus on the special case of perfect side information with unit lag corresponding to source coding with feedforward (the dual of channel coding with feedback).(cont.) Using duality, we develop a linear complexity algorithm which exploits the feedforward information to achieve the rate-distortion bound. The second part of the thesis focuses on channel dynamics in communication by introducing a new system model to study delay in streaming applications. We first consider an adversarial channel model where at any time the channel may suffer a burst of degraded performance (e.g., due to signal fading, interference, or congestion) and prove a coding theorem for the minimum decoding delay required to recover from such a burst. Our coding theorem illustrates the relationship between the structure of a code, the dynamics of the channel, and the resulting decoding delay. We also consider more general channel dynamics. Specifically, we prove a coding theorem establishing that, for certain collections of channel ensembles, delay-universal codes exist that simultaneously achieve the best delay for any channel in the collection. Practical constructions with low encoding and decoding complexity are described for both cases.(cont.) Finally, we also consider architectures consisting of both source and channel coding which deal with channel dynamics by spreading information over space, frequency, multiple antennas, or alternate transmission paths in a network to avoid coding delays. Specifically, we explore whether the inherent diversity in such parallel channels should be exploited at the application layer via multiple description source coding, at the physical layer via parallel channel coding, or through some combination of joint source-channel coding. For on-off channel models application layer diversity architectures achieve better performance while for channels with a continuous range of reception quality (e.g., additive Gaussian noise channels with Rayleigh fading), the reverse is true. Joint source-channel coding achieves the best of both by performing as well as application layer diversity for on-off channels and as well as physical layer diversity for continuous channels.by Emin Martinian.Ph.D

    Advanced MIMO Techniques for Future Wireless Communications

    Get PDF

    Study of efficient transmission and reception of image-type data using millimeter waves

    Get PDF
    Evaluation of signal processing and modulation techniques for transmission and reception of image type data via millimeter wave relay satellite

    Accounting for Companding Nonlinearities in Lossless Audio Compression

    No full text

    Biomimetic Based Applications

    Get PDF
    The interaction between cells, tissues and biomaterial surfaces are the highlights of the book "Biomimetic Based Applications". In this regard the effect of nanostructures and nanotopographies and their effect on the development of a new generation of biomaterials including advanced multifunctional scaffolds for tissue engineering are discussed. The 2 volumes contain articles that cover a wide spectrum of subject matter such as different aspects of the development of scaffolds and coatings with enhanced performance and bioactivity, including investigations of material surface-cell interactions

    Evaluation of glottal characteristics for speaker identification.

    Get PDF
    Based on the assumption that the physical characteristics of people's vocal apparatus cause their voices to have distinctive characteristics, this thesis reports on investigations into the use of the long-term average glottal response for speaker identification. The long-term average glottal response is a new feature that is obtained by overlaying successive vocal tract responses within an utterance. The way in which the long-term average glottal response varies with accent and gender is examined using a population of 352 American English speakers from eight different accent regions. Descriptors are defined that characterize the shape of the long-term average glottal response. Factor analysis of the descriptors of the long-term average glottal responses shows that the most important factor contains significant contributions from descriptors comprised of the coefficients of cubics fitted to the long-term average glottal response. Discriminant analysis demonstrates that the long-term average glottal response is potentially useful for classifying speakers according to their gender, but is not useful for distinguishing American accents. The identification accuracy of the long-term average glottal response is compared with that obtained from vocal tract features. Identification experiments are performed using a speaker database containing utterances from twenty speakers of the digits zero to nine. Vocal tract features, which consist of cepstral coefficients, partial correlation coefficients and linear prediction coefficients, are shown to be more accurate than the long-term average glottal response. Despite analysis of the training data indicating that the long-term average glottal response was uncorrelated with the vocal tract features, various feature combinations gave insignificant improvements in identification accuracy. The effect of noise and distortion on speaker identification is examined for each of the features. It is found that the identification performance of the long-term average glottal response is insensitive to noise compared with cepstral coefficients, partial correlation coefficients and the long-term average spectrum, but that it is highly sensitive to variations in the phase response of the speech transmission channel. Before reporting on the identification experiments, the thesis introduces speech production, speech models and background to the various features used in the experiments. Investigations into the long-term average glottal response demonstrate that it approximates the glottal pulse convolved with the long-term average impulse response, and this relationship is verified using synthetic speech. Furthermore, the spectrum of the long-term average glottal response extracted from pre-emphasized speech is shown to be similar to the long-term average spectrum of pre-emphasized speech, but computationally much simpler
    corecore