845 research outputs found

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Towards Loop-Free Forwarding of Anonymous Internet Datagrams that Enforce Provenance

    Full text link
    The way in which addressing and forwarding are implemented in the Internet constitutes one of its biggest privacy and security challenges. The fact that source addresses in Internet datagrams cannot be trusted makes the IP Internet inherently vulnerable to DoS and DDoS attacks. The Internet forwarding plane is open to attacks to the privacy of datagram sources, because source addresses in Internet datagrams have global scope. The fact an Internet datagrams are forwarded based solely on the destination addresses stated in datagram headers and the next hops stored in the forwarding information bases (FIB) of relaying routers allows Internet datagrams to traverse loops, which wastes resources and leaves the Internet open to further attacks. We introduce PEAR (Provenance Enforcement through Addressing and Routing), a new approach for addressing and forwarding of Internet datagrams that enables anonymous forwarding of Internet datagrams, eliminates many of the existing DDoS attacks on the IP Internet, and prevents Internet datagrams from looping, even in the presence of routing-table loops.Comment: Proceedings of IEEE Globecom 2016, 4-8 December 2016, Washington, D.C., US

    An Accountability Architecture for the Internet

    Get PDF
    In the current Internet, senders are not accountable for the packets they send. As a result, malicious users send unwanted traffic that wastes shared resources and degrades network performance. Stopping such attacks requires identifying the responsible principal and filtering any unwanted traffic it sends. However, senders can obscure their identity: a packet identifies its sender only by the source address, but the Internet Protocol does not enforce that this address be correct. Additionally, affected destinations have no way to prevent the sender from continuing to cause harm. An accountable network binds sender identities to packets they send for the purpose of holding senders responsible for their traffic. In this dissertation, I present an accountable network-level architecture that strongly binds senders to packets and gives receivers control over who can send traffic to them. Holding senders accountable for their actions would prevent many of the attacks that disrupt the Internet today. Previous work in attack prevention proposes methods of binding packets to senders, giving receivers control over who sends what to them, or both. However, they all require trusted elements on the forwarding path, to either assist in identifying the sender or to filter unwanted packets. These elements are often not under the control of the receiver and may become corrupt. This dissertation shows that the Internet architecture can be extended to allow receivers to block traffic from unwanted senders, even in the presence of malicious devices in the forwarding path. This dissertation validates this thesis with three contributions. The first contribution is DNA, a network architecture that strongly binds packets to their sender, allowing routers to reject unaccountable traffic and recipients to block traffic from unwanted senders. Unlike prior work, which trusts on-path devices to behave correctly, the only trusted component in DNA is an identity certification authority. All other entities may misbehave and are either blocked or evicted from the network. The second contribution is NeighborhoodWatch, a secure, distributed, scalable object store that is capable of withstanding misbehavior by its constituent nodes. DNA uses NeighborhoodWatch to store receiver-specific requests block individual senders. The third contribution is VanGuard, an accountable capability architecture. Capabilities are small, receiver-generated tokens that grant the sender permission to send traffic to receiver. Existing capability architectures are not accountable, assume a protected channel for obtaining capabilities, and allow on-path devices to steal capabilities. VanGuard builds a capability architecture on top of DNA, preventing capability theft and protecting the capability request channel by allowing receivers to block senders that flood the channel. Once a sender obtains capabilities, it no longer needs to sign traffic, thus allowing greater efficiency than DNA alone. The DNA architecture demonstrates that it is possible to create an accountable network architecture in which none of the devices on the forwarding path must be trusted. DNA holds senders responsible for their traffic by allowing receivers to block senders; to store this blocking state, DNA relies on the NeighborhoodWatch DHT. VanGuard extends DNA and reduces its overhead by incorporating capabilities, which gives destinations further control over the traffic that sources send to them

    An Architecture for Accountable Anonymous Access in the Internet-of-Things Network

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.With the rapid development of the Internet, more and more devices are being connected to the Internet, making up the Internet-of-Things (IoT). The accountability and privacy are two important but contradictory factors to ensure the security of IoT networks. How to provide an accountable anonymous access to IoT networks is a challenging task. Since the IoT network is largely driven by services, in this paper we propose a new and efficient architecture to achieve accountable anonymous access to IoT networks based on services. In this architecture, a self-certifying identifier is proposed to efficiently identify a service. The efficiency and overhead of the proposed architecture are evaluated by virtue of the real trace collected from an Internet service provider. The experimental results show that the proposed architecture could efficiently balance accountability and privacy with acceptable overheads.This work is partially supported by the National Key Technology Research and Development Program (No. 2017YFB0801801), the National Science and Technology Major Project of the Ministry of Science and Technology of China (No. 2017ZX03001019), and the National Natural Science Foundation of China (No. 61672490 and No. 61303241)

    A privacy preserved and credible network protocol

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe identities of packet senders and receivers are treated as important privacy information in communication networks. Any packet can be attributed to its sender for evaluating its credibility. Existing studies mainly rely on third-party agents that contain the packet sender's identity to ensure the sender's privacy preservation and credibility. In this case, packet senders run the risk that their privacy might be leaked by the agent. To this end, this paper proposes a Privacy Preserved and Credible Network Protocol (PCNP), which authorizes the agent to hide the identities of senders and receivers, while guaranteeing the credibility of a packet. The feasibility of the PCNP deployment is analyzed, and its performance is evaluated through extensive experiments.Ministry of Science and Technology of ChinaChinese Academy of Scienc

    APCN: A Scalable Architecture for Balancing Accountability and Privacy in Large-scale Content-based Networks

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record. Balancing accountability and privacy has become extremely important in cyberspace, and the Internet has evolved to be dominated by content transmission. Several research efforts have been devoted to contributing to either accountability or privacy protection, but none of them has managed to consider both factors in content-based networks. An efficient solution is therefore urgently demanded by service and content providers. However, proposing such a solution is very challenging, because the following questions need to be considered simultaneously: (1) How can the conflict between privacy and accountability be avoided? (2) How is content identified and accountability performed based on packets belonging to that content? (3) How can the scalability issue be alleviated on massive content accountability in large-scale networks? To address these questions, we propose the first scalable architecture for balancing Accountability and Privacy in large-scale Content-based Networks (APCN). In particular, an innovative method for identifying content is proposed to effectively distinguish the content issued by different senders and from different flows, enabling the accountability of a content based on any of its packets. Furthermore, a new idea with double-delegate (i.e., source and local delegates) is proposed to improve the performance and alleviate the scalability issue on content accountability in large-scale networks. Extensive NS-3 experiments with real trace are conducted to validate the efficiency of the proposed APCN. The results demonstrate that APCN outperforms existing related solutions in terms of lower round-trip time and higher cache hit rate under different network configurations.National Key R&D Program of ChinaNational Science and Technology Major Project of the Ministry of Science and Technology of ChinaNational Natural Science Foundation of Chin
    • …
    corecore