3,253 research outputs found

    A2BE: Accountable Attribute-Based Encryption for Abuse Free Access Control

    Get PDF
    As a recently proposed public key primitive, attribute-based encryption (ABE) (including Ciphertext-policy ABE (CP-ABE) and Key-policy ABE (KP-ABE)) is a highly promising tool for secure access control. In this paper, the issue of key abuse in ABE is formulated and addressed. Two kinds of key abuse problems are considered, i) illegal key sharing among colluding users and ii) misbehavior of the semi-trusted attribute authority including illegal key (re-)distribution. Both problems are extremely important as in an ABE-based access control system, the attribute private keys directly imply users\u27 privileges to the protected resources. To the best knowledge of ours, such key abuse problems exist in all current ABE schemes as the attribute private keys assigned to the users are never designed to be linked to any user specific information except the commonly shared user attributes. To be concrete, we focus on the prevention of key abuse in CP-ABE in this paper \footnote{Our technique can easily be extended to KP-ABE as well.}. The notion of accountable CP-ABE (CP-A2^2BE, in short) is first proposed to prevent illegal key sharing among colluding users. The accountability for user is achieved by embedding additional user specific information in the attribute private key issued to the user. To further obtain accountability for the attribute authority as well, the notion of strong CP-A2^2BE is proposed, allowing each attribute private key to be linked to the corresponding user\u27s secret that is unknown to the attribute authority. We show how to construct such a strong CP-A2^2BE and prove its security based on the computational Diffie-Hellman assumption. Finally, we show how to utilize the new technique to solve some open problems existed in the previous accountable identity-based encryption schemes

    Attribute-based encryption for cloud computing access control: A survey

    Get PDF
    National Research Foundation (NRF) Singapore; AXA Research Fun

    Accountable Authority Ciphertext-Policy Attribute-Based Encryption with White-Box Traceability and Public Auditing in the Cloud

    Get PDF
    As a sophisticated mechanism for secure fine-grained access control, ciphertext-policy attribute-based encryption (CP-ABE) is a highly promising solution for commercial applications such as cloud computing. However, there still exists one major issue awaiting to be solved, that is, the prevention of key abuse. Most of the existing CP-ABE systems missed this critical functionality, hindering the wide utilization and commercial application of CP-ABE systems to date. In this paper, we address two practical problems about the key abuse of CP-ABE: (1) The key escrow problem of the semi-trusted authority; and, (2) The malicious key delegation problem of the users. For the semi-trusted authority, its misbehavior (i.e., illegal key (re-)distribution) should be caught and prosecuted. And for a user, his/her malicious behavior (i.e., illegal key sharing) need be traced. We affirmatively solve these two key abuse problems by proposing the first accountable authority CP-ABE with white-box traceability that supports policies expressed in any monotone access structures. Moreover, we provide an auditor to judge publicly whether a suspected user is guilty or is framed by the authority

    Secure data sharing and processing in heterogeneous clouds

    Get PDF
    The extensive cloud adoption among the European Public Sector Players empowered them to own and operate a range of cloud infrastructures. These deployments vary both in the size and capabilities, as well as in the range of employed technologies and processes. The public sector, however, lacks the necessary technology to enable effective, interoperable and secure integration of a multitude of its computing clouds and services. In this work we focus on the federation of private clouds and the approaches that enable secure data sharing and processing among the collaborating infrastructures and services of public entities. We investigate the aspects of access control, data and security policy languages, as well as cryptographic approaches that enable fine-grained security and data processing in semi-trusted environments. We identify the main challenges and frame the future work that serve as an enabler of interoperability among heterogeneous infrastructures and services. Our goal is to enable both security and legal conformance as well as to facilitate transparency, privacy and effectivity of private cloud federations for the public sector needs. © 2015 The Authors

    Efficient Construction for Full Black-Box Accountable Authority Identity-Based Encryption

    Get PDF
    Accountable authority identity-based encryption (A-IBE), as an attractive way to guarantee the user privacy security, enables a malicious private key generator (PKG) to be traced if it generates and re-distributes a user private key. Particularly, an A-IBE scheme achieves full black-box security if it can further trace a decoder box and is secure against a malicious PKG who can access the user decryption results. In PKC\u2711, Sahai and Seyalioglu presented a generic construction for full black-box A-IBE from a primitive called dummy identity-based encryption, which is a hybrid between IBE and attribute-based encryption (ABE). However, as the complexity of ABE, their construction is inefficient and the size of private keys and ciphertexts in their instantiation is linear in the length of user identity. In this paper, we present a new efficient generic construction for full black-box A-IBE from a new primitive called token-based identity-based encryption (TB-IBE), without using ABE. We first formalize the definition and security model for TB-IBE. Subsequently, we show that a TB-IBE scheme satisfying some properties can be converted to a full black-box A-IBE scheme, which is as efficient as the underlying TB-IBE scheme in terms of computational complexity and parameter sizes. Finally, we give an instantiation with the computational complexity as O(1) and the constant size master key pair, private keys, and ciphertexts

    Anonymous and Adaptively Secure Revocable IBE with Constant Size Public Parameters

    Full text link
    In Identity-Based Encryption (IBE) systems, key revocation is non-trivial. This is because a user's identity is itself a public key. Moreover, the private key corresponding to the identity needs to be obtained from a trusted key authority through an authenticated and secrecy protected channel. So far, there exist only a very small number of revocable IBE (RIBE) schemes that support non-interactive key revocation, in the sense that the user is not required to interact with the key authority or some kind of trusted hardware to renew her private key without changing her public key (or identity). These schemes are either proven to be only selectively secure or have public parameters which grow linearly in a given security parameter. In this paper, we present two constructions of non-interactive RIBE that satisfy all the following three attractive properties: (i) proven to be adaptively secure under the Symmetric External Diffie-Hellman (SXDH) and the Decisional Linear (DLIN) assumptions; (ii) have constant-size public parameters; and (iii) preserve the anonymity of ciphertexts---a property that has not yet been achieved in all the current schemes
    corecore