3,541 research outputs found

    StackInsights: Cognitive Learning for Hybrid Cloud Readiness

    Full text link
    Hybrid cloud is an integrated cloud computing environment utilizing a mix of public cloud, private cloud, and on-premise traditional IT infrastructures. Workload awareness, defined as a detailed full range understanding of each individual workload, is essential in implementing the hybrid cloud. While it is critical to perform an accurate analysis to determine which workloads are appropriate for on-premise deployment versus which workloads can be migrated to a cloud off-premise, the assessment is mainly performed by rule or policy based approaches. In this paper, we introduce StackInsights, a novel cognitive system to automatically analyze and predict the cloud readiness of workloads for an enterprise. Our system harnesses the critical metrics across the entire stack: 1) infrastructure metrics, 2) data relevance metrics, and 3) application taxonomy, to identify workloads that have characteristics of a) low sensitivity with respect to business security, criticality and compliance, and b) low response time requirements and access patterns. Since the capture of the data relevance metrics involves an intrusive and in-depth scanning of the content of storage objects, a machine learning model is applied to perform the business relevance classification by learning from the meta level metrics harnessed across stack. In contrast to traditional methods, StackInsights significantly reduces the total time for hybrid cloud readiness assessment by orders of magnitude

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    An efficient resource sharing technique for multi-tenant databases

    Get PDF
    Multi-tenancy is one of the key components of cloud computing environment. Multi-tenant database system in SaaS (Software as a Service) has gained a lot of attention in academics, research and business arena. These database systems provide scalability and economic benefits for both cloud service providers and customers(organizations/companies referred as tenants) by sharing same resources and infrastructure in isolation of shared databases, network and computing resources with Service level agreement (SLA) compliances. In a multitenant scenario, active tenants compete for resources in order to access the database. If one tenant blocks up the resources, the performance of all the other tenants may be restricted and a fair sharing of the resources may be compromised. The performance of tenants must not be affected by resource-intensive activities and volatile workloads of other tenants. Moreover, the prime goal of providers is to accomplish low cost of operation, satisfying specific schemas/SLAs of each tenant. Consequently, there is a need to design and develop effective and dynamic resource sharing algorithms which can handle above mentioned issues. This work presents a model embracing a query classification and worker sorting technique to efficiently share I/O, CPU and Memory thus enhancing dynamic resource sharing and improvising the utilization of idle instances proficiently. The model is referred as Multi-Tenant Dynamic Resource Scheduling Model (MTDRSM) .The MTDRSM support workload execution of different benchmark such as TPC-C(Transaction Processing Performance Council), YCSB(The Yahoo! Cloud Serving Benchmark)etc. and on different database such as MySQL, Oracle, H2 database etc. Experiments are conducted for different benchmarks with and without SLA compliances to evaluate the performance of MTDRSM in terms of latency and throughput achieved. The experiments show significant performance improvement over existing Mute Bench model in terms of latency and throughput

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Nano Server and Containers in Windows Server 2016

    Get PDF
    The purpose of this project was to review the new Windows Server 2016 features and test out Nano Server and Containers in the Windows Server 2016 environment. Only small part of people know what Containers and Nano Server are. Thus, this theses introduce this new features in more details to everyone. Windows Server 2016 has a lot of new impacts in various of fields. These impacts consist of compute, administration, identity and access, networking, storage, security and assurance and failover clustering. These impacts were analyzed, and based on my own decision I decided to test Nano Server and Containers in practice. The operating system and working environment were given by the supervisor. Server was created in a cluster. Based on the project theme, all configurations were made on Windows Server 2016. Container management was made using the Docker program providing containerization. The result of the thesis was a fully working Nano Server in Hyper-V that can do all the configurations. There is a web service that can be implemented, if needed. Later web services in a Container using nginx and docker-compose was made. Finally, fully running and working Nano Server in a container was implemented
    corecore