863 research outputs found

    Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces

    Full text link
    [EN] Traditional interaction mechanisms in distributed digital spaces often fail to consider the intrinsic properties of action, perception, and communication among workgroups, which may affect access to the common resources used to mutually organize information. By developing suitable spatial geometries and natural interaction mechanisms, distributed spaces can become blended where the physical and virtual boundaries of local and remote spaces merge together to provide the illusion of a single unified space. In this paper, we discuss the importance of blended interaction in distributed spaces and the particular challenges faced when designing accessible technology. We illustrate this discussion through a new tangible interaction mechanism for collaborative spaces based on tabletop system technology implemented with optical frames. Our tangible elements facilitate the exchange of digital information in distributed collaborative settings by providing a physical manifestation of common digital operations. The tangibles are designed as passive elements that do not require the use of any additional hardware or external power while maintaining a high degree of accuracy.This work was supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund, through the ANNOTA Project (Ref. TIN2013-46036-C3-1-R).Salvador-Herranz, G.; Camba, J.; Contero, M.; Naya Sanchis, F. (2018). Accessibility and tangible interaction in distributed workspaces based on multi-touch surfaces. Universal Access in the Information Society. 17(2):247-256. https://doi.org/10.1007/s10209-017-0563-7S247256172Arkin, E.M., Chew, L.P., Huttenlocher, D.P., Kedem, K., Mitchell, J.S.B.: An efficiently computable metric for comparing polygonal shapes. IEEE Trans. Acoust. Speech Signal Process. 13(3), 209–216 (1991)Benyon, D.: Presence in blended spaces. Interact. Comput. 24(4), 219–226 (2012)Bhalla, M.R., Bhalla, A.V.: Comparative study of various touchscreen technologies. Int. J. Comput. Appl. 6(8), 12–18 (2010)Bradski, G., Kaehler, A.: Learning OpenCV: Computer Vision with the OpenCV Library. O’Reilly Media Inc., Newton (2008)Candela, E.S., Pérez, M.O., Romero, C.M., López, D.C.P., Herranz, G.S., Contero, M., Raya, M.A.: Humantop: a multi-object tracking tabletop. Multimed. Tools Appl. 70(3), 1837–1868 (2014)Cohen, J., Withgott, M., Piernot, P.: Logjam: a tangible multi-person interface for video logging. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 128–135. ACM (1999)Couture, N., Rivière, G., Reuter, P.: Geotui: a tangible user interface for geoscience. In: Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, pp. 89–96. ACM (2008)de la Guía, E., Lozano, M.D., Penichet, V.R.: Cognitive rehabilitation based on collaborative and tangible computer games. In: 2013 7th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 389–392. IEEE (2013)Dietz, P., Leigh, D.: Diamondtouch: a multi-user touch technology. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, pp. 219–226. ACM (2001)Falcão, T.P., Price, S.: What have you done! the role of ‘interference’ in tangible environments for supporting collaborative learning. In: Proceedings of the 9th International Conference on Computer Supported Collaborative Learning-Volume 1, pp. 325–334. International Society of the Learning Sciences (2009)Fallman, D.: Wear, point and tilt. In: Proceedings of the Conference on Designing Interactive Systems: Processes, Practices, Methods, and Techniques, pp. 293–302. ACM Press (2002)Fishkin, K.P., Gujar, A., Harrison, B.L., Moran, T.P., Want, R.: Embodied user interfaces for really direct manipulation. Commun. ACM 43(9), 74–80 (2000)Fitzmaurice, G.W., Buxton, W.: An empirical evaluation of graspable user interfaces: towards specialized, space-multiplexed input. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 43–50. ACM (1997)Fitzmaurice, G.W., Ishii, H., Buxton, W.A.: Bricks: laying the foundations for graspable user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 442–449. ACM Press (1995)Graham, R.L., Yao, F.F.: Finding the convex hull of a simple polygon. J. Algorithms 4(4), 324–331 (1983)Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. R. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)Higgins, S.E., Mercier, E., Burd, E., Hatch, A.: Multi-touch tables and the relationship with collaborative classroom pedagogies: a synthetic review. Int. J. Comput. Support. Collab. Learn. 6(4), 515–538 (2011)Hinckley, K., Pausch, R., Goble, J.C., Kassell, N.F.: Passive real-world interface props for neurosurgical visualization. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 452–458. ACM (1994)Hinske, S.: Determining the position and orientation of multi-tagged objects using RFID technology. In: 5th Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops’07, pp. 377–381. IEEE (2007)Hornecker, E.: A design theme for tangible interaction: embodied facilitation. In: ECSCW 2005, pp. 23–43. Springer (2005)Hoshi, K., Öhberg, F., Nyberg, A.: Designing blended reality space: conceptual foundations and applications. In: Proceedings of the 25th BCS Conference on Human–Computer Interaction, pp. 217–226. British Computer Society (2011)Ishii, H.: Tangible User Interfaces. CRC Press, Boca Raton (2007)Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits and atoms. In: Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 234–241. ACM (1997)Jacob, R.J., Girouard, A., Hirshfield, L.M., Horn, M.S., Shaer, O., Solovey, E.T., Zigelbaum, J.: Reality-based interaction: a framework for post-wimp interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 201–210. ACM (2008)Jetter, H.C., Dachselt, R., Reiterer, H., Quigley, A., Benyon, D., Haller, M.: Blended Interaction: Envisioning Future Collaborative Interactive Spaces. ACM, New York (2013)Jin, X., Han, J.: Quality threshold clustering. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning, pp. 820–820. Springer, Boston, MA (2011)Jordà, S., Geiger, G., Alonso, M., Kaltenbrunner, M.: The reactable: exploring the synergy between live music performance and tabletop tangible interfaces. In: Proceedings of the 1st International Conference on Tangible and Embedded Interaction, pp. 139–146. ACM (2007)Kaltenbrunner, M., Bovermann, T., Bencina, R., Costanza, E.: Tuio: a protocol for table-top tangible user interfaces. In: Proceedings of the 6th International Workshop on Gesture in Human–Computer Interaction and Simulation, pp. 1–5 (2005)Kirk, D., Sellen, A., Taylor, S., Villar, N., Izadi, S.: Putting the physical into the digital: issues in designing hybrid interactive surfaces. In: Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, pp. 35–44. British Computer Society (2009)Marques, T., Nunes, F., Silva, P., Rodrigues, R.: Tangible interaction on tabletops for elderly people. In: International Conference on Entertainment Computing, pp. 440–443. Springer (2011)Müller, D.: Mixed reality systems. iJOE 5(S2), 10–11 (2009)Newton-Dunn, H., Nakano, H., Gibson, J.: Block jam: a tangible interface for interactive music. In: Proceedings of the 2003 Conference on New Interfaces for Musical Expression, pp. 170–177. National University of Singapore (2003)Patten, J., Recht, B., Ishii, H.: Audiopad: a tag-based interface for musical performance. In: Proceedings of the 2002 Conference on New Interfaces for Musical Expression, pp. 1–6. National University of Singapore (2002)Patten, J., Recht, B., Ishii, H.: Interaction techniques for musical performance with tabletop tangible interfaces. In: Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, p. 27. ACM (2006)PQLabs: Inc. http://multitouch.com/ . Retrieved on 16 October 2016Ryokai, K., Marti, S., Ishii, H.: I/o brush: drawing with everyday objects as ink. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’04, pp. 303–310. ACM, New York (2004). doi: 10.1145/985692.985731Salvador, G., Bañó, M., Contero, M., Camba, J.: Evaluation of a distributed collaborative workspace as a creativity tool in the context of design education. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp. 1–7. IEEE (2014)Salvador-Herranz, G., Contero, M., Camba, J.: Use of tangible marks with optical frame interactive surfaces in collaborative design scenarios based on blended spaces. In: International Conference on Cooperative Design, Visualization and Engineering, pp. 253–260. Springer (2014)Salvador-Herranz, G., Camba, J.D., Naya, F., Contero, M.: On the integration of tangible elements with multi-touch surfaces for the collaborative creation of concept maps. In: International Conference on Learning and Collaboration Technologies, pp. 177–186. Springer (2016)Schöning, J., Hook, J., Bartindale, T., Schmidt, D., Oliver, P., Echtler, F., Motamedi, N., Brandl, P., von Zadow, U.: Building interactive multi-touch surfaces. In: Müller-Tomfelde, C. (ed.) Tabletops-Horizontal Interactive Displays, pp. 27–49. Springer, London, UK (2010)Shaer, O., Hornecker, E.: Tangible user interfaces: past, present, and future directions. Found. Trends Hum. Comput. Interact. 3(1–2), 1–137 (2010)Shen, C., Everitt, K., Ryall, K.: Ubitable: Impromptu face-to-face collaboration on horizontal interactive surfaces. In: International Conference on Ubiquitous Computing, pp. 281–288. Springer (2003)Suzuki, H., Kato, H.: Algoblock: a tangible programming language, a tool for collaborative learning. In: Proceedings of 4th European Logo Conference, pp. 297–303 (1993)Suzuki, H., Kato, H.: Interaction-level support for collaborative learning: Algoblockan open programming language. In: The 1st International Conference on Computer Support for Collaborative Learning, pp. 349–355. L. Erlbaum Associates Inc. (1995)Terrenghi, L., Kirk, D., Richter, H., Krämer, S., Hilliges, O., Butz, A.: Physical handles at the interactive surface: exploring tangibility and its benefits. In: Proceedings of the Working Conference on Advanced Visual Interfaces, pp. 138–145. ACM (2008)Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: SMI 2001 International Conference on Shape Modeling and Applications, pp. 188–197. IEEE (2001)Weinberg, G., Gan, S.L.: The squeezables: Toward an expressive and interdependent multi-player musical instrument. Comput. Music J. 25(2), 37–45 (2001)Weiser, M.: Some computer science issues in ubiquitous computing. Commun. ACM 36(7), 75–84 (1993)Wilson, F.: The hand: how its use shapes the brain, language, and human culture. Vintage Series. Vintage Books (1998). https://books.google.es/books?id=l_Boy_-NkwUCZuckerman, O., Arida, S., Resnick, M.: Extending tangible interfaces for education: digital montessori-inspired manipulatives. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 859–868. ACM (2005

    Equal opportunities: Do shareable interfaces promote more group participation than single users displays?

    Get PDF
    Computers designed for single use are often appropriated suboptimally when used by small colocated groups working together. Our research investigates whether shareable interfaces–that are designed for more than one user to inter-act with–can facilitate more equitable participation in colocated group settings compared with single user displays. We present a conceptual framework that characterizes Shared Information Spaces (SISs) in terms of how they constrain and invite participation using different entry points. An experiment was conducted that compared three different SISs: a physical-digital set-up (least constrained), a multitouch tabletop (medium), and a laptop display (most constrained). Statistical analyses showed there to be little difference in participation levels between the three conditions other than a predictable lack of equity of control over the interface in the laptop condition. However, detailed qualitative analyses revealed more equitable participation took place in the physical-digital condition in terms of verbal utterances over time. Those who spoke the least contributed most to the physical design task. The findings are discussed in relation to the conceptual framework and, more generally, in terms of how to select, design, and combine different display technologies to support collaborative activities

    TANTO - tangible and touch interaction combined on a surface and above

    Get PDF
    Tese de mestrado, Engenharia Informática (Engenharia de Software), Universidade de Lisboa, Faculdade de Ciências, 2014As interações multi-toque estão tipicamente limitadas a uma superfície mesmo quando combinadas com tangíveis. Os cenários tradicionais, onde os utilizadores interagem com objectos físicos numa mesa e por cima dela, não foram ainda replicados com sucesso utilizando tecnologias existentes como, por exemplo, mesas multi-toque. Estas não suportam as interações naturais do utilizador ao combinar a superfície da mesa com a área acima dela num espaço contínuo de interação, limitando assim a sua aplicabilidade. Este trabalho aponta para a construção e exploração de uma mesa que permita aos utilizadores beneficiar de um espaço contínuo de interação na mesa e acima dela com interações multi-toque e tangíveis. Para atingir este objectivo, melhorámos uma mesa multi-toque existente, de forma a suportar interações com tangíveis na superfície e por cima. Para alcançar este resultado é necessário recorrer a várias tecnologias. Para enquadrar esse desenvolvimento, apresentamos uma revisão do estado da arte das tecnologias de interação atuais que incluem interações com toque, tangíveis e gestos. Estas tecnologias são implementadas na nossa mesa para oferecer estas formas diferentes de interação. Suportar todas estas tecnologias de interação traz o problema acrescido de combinar diferentes fontes de informação. Como tal, sentimos a necessidade de desenvolver uma ferramenta que nos permitisse não só juntar todas as componentes, mas também distribuir a sua informação para aplicações clientes de uma forma fácil de compreender e utilizar. Apresentamos a TACTIC, uma API que é capaz de combinar superfícies de toque, tangíveis e interações por cima da mesa de uma forma que permite aos programadores utilizar as suas funcionalidades e distribuir interfaces através de múltiplos aparelhos,se necessário. A TACTIC é desenvolvida em JavaScript, sendo responsável por conectar aplicações executadas em navegadores Web a várias fontes de dados, enviando-lhes informação de toque, tangíveis e gestos de uma forma fácil e rápida. A TACTIC foi desenvolvida para funcionar com mesas multi-toque existentes, permitindo-lhes tirar proveito do espaço por cima da mesa através de deteção de gestos. Graças ao facto de correr nativamente em navegadoresWeb, a TACTIC tem o benefício acrescido de ser facilmente disponibilizada numa mesa de toque ou smartphone, suportando abstrações de eventos de toque, permitindo assim que o mesmo código seja reutilizado quer em mesas físicas ou dispositivos móveis. Adicionalmente, permite a disponibilização fácil de objetos digitais com comportamentos interativos e torna informação de gestos disponível de forma a que um evento de toque ou tangível traga consigo a informação da mão e dedos utilizados por associação. A TACTIC tem uma arquitetura altamente modular graças ao RabbitMQ, um middleware de mensagens que liga as diferentes componentes e linguagens permitindo comunicação simples e direta entre elas. Desta forma, é possível adicionar novas componentes com facilidade sem se fazer alteracões a configurações anteriores. Esta arquitetura inclui um módulo Node.js para comunicação entre aplicações Web em cenários com vários dispositivos, permitindo assim o fácil desenvolvimento de interfaces distribuídas. Para investigar a facilidade de aprendizagem e uso da nossa API foi conduzido um estudo com programadores. Os participantes deste estudo foram incumbidos com a tarefa de desenvolver aplicações que requerem conhecimentos de diferentes aspectos da TACTIC, assim como também algumas bases de JavaScript e CSS. O objectivo foi compreender o nível de facilidade e rapidez com que os programadores são capazes de desenvolver aplicações complexas utilizando a TACTIC. Para atingir este objectivo, foi pedido aos participantes o desenvolvimento de uma aplicação de pintura, cuja complexidade iria aumentando gradualmente tarefa a tarefa, juntamente com as funcionalidades da API a utilizar. Ao chegar ao fim das tarefas, os participantes conseguiram construir aplicações que usavam toque, tangíveis e interações acima da mesa em cenários com mais que um dispositivo em pouco tempo. Este estudo comprovou a facilidade de compreensão e uso da TACTIC, graças à sua promoção de reutilização de código e abstrações que permitiram uma rápida implementação das suas várias funcionalidades em aplicações Web. Apresentamos, adicionalmente, um conjunto de aplicações que demonstram as funcionalidades chave da TACTIC. Estas aplicações distribuem-se em múltiplas formas de interação e interfaces. Este trabalho descreve como estas aplicações utilizam os vários eventos e propriedades da nossa API, variando entre interações de toque e tangíveis na mesa a interações acima da mesa e cenários com vários dispositivos. Para este trabalho, comprometemo-nos a resolver problemas existentes com mesas semelhantes à nossa. Em cenários de colaboração, por exemplo, as interações à volta da mesa podem causar interferência entre utilizadores. Queremos explorar novas soluções para estes problemas e integrá-las na nossa mesa, explorando diferentes cenários, tanto individuais como colaborativos, para atingir uma interação natural em toda a área do espaço de interação. Desta forma, decidimos expandir as capacidades da nossa mesa para permitir interações em cenários de colaboração. Como tal, apresentamos o processo necessário para tornar esta funcionalidade uma realidade seguido de uma aplicação que demonstra o seu uso. Sentimos que existe uma falta de estudos sobre a forma como o espaço contínuo de interação causa impacto nas interações de utilizadores. Adicionalmente, não existem comparações de desempenho em gestos semelhantes na mesa e por cima dela. Como tal, tiramos vantagem da nossa API para contribuir com um estudo sobre o desempenho dos utilizadores quando executam ações na mesa e por cima dela, apontando para resultados que serão úteis para informar o desenho futuro de aplicações que explorem este espaço contínuo de interação. De acordo com o que conseguimos apurar, este é o primeiro estudo que compara ações tanto na mesa como por cima dela. Para tal, escolhemos ações de “Zoom” e Rotação, dado que os gestos de “Pinch” e Rotac¸ ao são bastante comuns em interações com smartphones e tablets. Na superfície estes gestos são realizados colocando dois dedos na mesa e fazendo um gesto de “pinch” ou rotação, como é normal. Dado que por cima da mesa não há uma superfície sobre a qual se possa repousar os dedos, os gestos utilizados foram ligeiramente alterados. Para se fazer “zoom”, os utilizadores devem fechar os dedos num gesto de pinch para selecionar e de seguida controlar o nível de “zoom” ao mover a mão mais perto (zoom in) ou mais longe (zoom out) da mesa. Para fazer uma rotação os utilizadores colocam a sua mão aberta por cima do elemento e rodam-na num plano paralelo ao da superfície da mesa. Este estudo confirmou que o desempenho na superfície ´e melhor que por cima dela, enquanto que outros resultados permitiram investigar o impacto que a área onde o gesto é feito tem no seu resultado desejado; a relação entre as mecânicas das tarefas e a ergonomia humana; e os benefícios que podem vir de permitir a superfícies de toque o reconhecimento de gestos por cima delas. Contribuímos, também, para um estudo com utilizadores cegos, que nos forneceu a oportunidade de testar as aplicações da TACTIC e a nossa mesa no campo da acessibilidade. Este estudo captura dados de desempenho de utilizadores ao explorar elementos numa superfície com uma ou duas mãos, revelando que a exploração da superfície com duas mãos consegue melhorar as suas habilidades para este efeito. A TACTIC foi responsável por detectar as mãos e dedos utilizados a todo o momento. Tirámos proveito da modularidade da sua arquitetura para incorporar com facilidade uma componente áudio e de auditoria existentes com a aplicação desenvolvida. Esta forma de interação com duas mãos, demonstrou ser benéfica para algumas tarefas, particularmente a relação entre alvos e promover uma melhor estruturação na tarefa de exploração.Multitouch interaction is usually limited to one surface, even when combined with tangibles. Traditional scenarios where people interact with physical objects on and above the table or other surfaces have failed to be fully translated into existing technologies, such as multitouch setups, which don’t support natural user interactions by combining the surface and the area above it into one continuous interaction space. We built on top of an existing multitouch setup to support tangible interactions on and above the surface. Various technologies are necessary to achieve this result, which brings the added problem of combining the different sources of information. We present TACTIC, an API that is capable of combining touch surfaces, tangibles, and the interaction space above the surface, in a way that allows developers to easily combine all these features, and distribute interfaces across multiple devices if required. Additionally, we present the results of a developer study showing how TACTIC is easy to learn and use. We take advantage of TACTIC’s capabilities to conduct a study on user performance when performing actions on and above the table, aiming for results that will be useful towards informing the design of applications that explore a continuous interaction space. We showcase TACTIC’s capabilites through a set of applications that draw from its many features, demonstrating its flexibility and ease of use

    Collaborative Human-Computer Interaction with Big Wall Displays - BigWallHCI 2013 3rd JRC ECML Crisis Management Technology Workshop

    Get PDF
    The 3rd JRC ECML Crisis Management Technology Workshop on Human-Computer Interaction with Big Wall Displays in Situation Rooms and Monitoring Centres was co-organised by the European Commission Joint Research Centre and the University of Applied Sciences St. Pölten, Austria. It took place in the European Crisis Management Laboratory (ECML) of the JRC in Ispra, Italy, from 18 to 19 April 2013. 40 participants from stakeholders in the EC, civil protection bodies, academia, and industry attended the workshop. The hardware of large display areas is on the one hand mature since many years and on the other hand changing rapidly and improving constantly. This high pace developments promise amazing new setups with respect to e.g., pixel density or touch interaction. On the software side there are two components with room for improvement: 1. the software provided by the display manufacturers to operate their video walls (source selection, windowing system, layout control) and 2. dedicated ICT systems developed to the very needs of crisis management practitioners and monitoring centre operators. While industry starts to focus more on the collaborative aspects of their operating software already, the customized and tailored ICT applications needed are still missing, unsatisfactory, or very expensive since they have to be developed from scratch many times. Main challenges identified to enhance big wall display systems in crisis management and situation monitoring contexts include: 1. Interaction: Overcome static layouts and/or passive information consumption. 2. Participatory Design & Development: Software needs to meet users’ needs. 3. Development and/or application of Information Visualisation & Visual Analytics principle to support the transition from data to information to knowledge. 4. Information Overload: Proper methods for attention management, automatic interpretation, incident detection, and alarm triggering are needed to deal with the ever growing amount of data to be analysed.JRC.G.2-Global security and crisis managemen

    Designing to Support Workspace Awareness in Remote Collaboration using 2D Interactive Surfaces

    Get PDF
    Increasing distributions of the global workforce are leading to collaborative workamong remote coworkers. The emergence of such remote collaborations is essentiallysupported by technology advancements of screen-based devices ranging from tabletor laptop to large displays. However, these devices, especially personal and mobilecomputers, still suffer from certain limitations caused by their form factors, that hinder supporting workspace awareness through non-verbal communication suchas bodily gestures or gaze. This thesis thus aims to design novel interfaces andinteraction techniques to improve remote coworkers’ workspace awareness throughsuch non-verbal cues using 2D interactive surfaces.The thesis starts off by exploring how visual cues support workspace awareness infacilitated brainstorming of hybrid teams of co-located and remote coworkers. Basedon insights from this exploration, the thesis introduces three interfaces for mobiledevices that help users maintain and convey their workspace awareness with their coworkers. The first interface is a virtual environment that allows a remote person to effectively maintain his/her awareness of his/her co-located collaborators’ activities while interacting with the shared workspace. To help a person better express his/her hand gestures in remote collaboration using a mobile device, the second interfacepresents a lightweight add-on for capturing hand images on and above the device’sscreen; and overlaying them on collaborators’ device to improve their workspace awareness. The third interface strategically leverages the entire screen space of aconventional laptop to better convey a remote person’s gaze to his/her co-locatedcollaborators. Building on the top of these three interfaces, the thesis envisions an interface that supports a person using a mobile device to effectively collaborate with remote coworkers working with a large display.Together, these interfaces demonstrate the possibilities to innovate on commodity devices to offer richer non-verbal communication and better support workspace awareness in remote collaboration

    Citizen engagement through tangible data representation

    Get PDF
    We begin with the premise that data literacy is a fundamental facet of citizen education in this information age, and that an engaged citizenry in a democracy not only requires access to data, but also the capacity to manipulate and examine the data from multiple perspectives. The visualization of data elucidates trends and patterns in the phenomena that the data represents, and opens accessibility to understanding complicated human and natural processes represented by data sets. Research indicates that interacting with a visualization amplifies cognition and analysis. A single visualization may show only one facet of the data. To examine the data from multiple perspectives, engaged citizens need to be able to construct their own visualizations from a data set. Many tools for data visualization have responded to this need, allowing non-data experts to manipulate and gain insights into their data, but most of these tools are restricted to the computer screen, keyboard, and mouse. Cognition and analysis may be strengthened even more through embodied interaction with data. We present here the rationale for the design of a tool that allows users to probe a data set, through interactions with graspable (tangible) three-dimensional objects, rather than through a keyboard and mouse interaction. We argue that the use of tangibles facilitates understanding abstract concepts, and facilitates many concrete learning scenarios. Another advantage of using tangibles over screen-based tools is that they foster collaboration, which can promote a productive working and learning environment. We speculate that collaborative data exploration can be a productive educational activity for citizens in their communities and in the classroom, and we suggest our tool as a means to do this

    Investigating the Impact of Co-located and Distributed Collaboration Using Multi-touch Tables

    Get PDF
    With the intention to study the role of new interfaces in multi-user applications, multi-touch tabletops are investigated to examine if they effectively aid their users in working together synchronously. Multi-player games are selected as a case of collaborative work. Early studies of distributed multi-touch tabletops did not cover the HCI related aspects associated with multi-player games, especially in distributed configuration. The performance, collaboration, and usability aspects of HCI are studied in this research. A simple multi-player maze game has been designed and implemented over two connected and physically separated multi-touch tabletops. The aim of this work is to investigate the effects of distribution on players performance, collaboration, and usability of multi-player games over multi-touch tabletops, compared to playing in a co-located condition. Groups of participants have been randomly selected and assigned to play the game in pairs under two conditions: co-located where two players are playing the game on the same table, and distributed where they are playing the game but on separate tables. The collected data is statistically analysed to test for differences between the two conditions, as well as the differences of the strength of the correlation between the underlying factors. The results indicate that, in general, the differences are not significant for such type of applications if a simple and efficient communication mechanism is provided for the players in the distributed condition. Players expressed almost the same level of usability engagement and enjoyment for the two conditions. This may have a strong impact on the HCI aspects when designing such type of applications on the future

    On the Use of Large Interactive Displays to Support Collaborative Engagement and Visual Exploratory Tasks

    Get PDF
    Large interactive displays can provide suitable workspaces for learners to conduct collaborative learning tasks with visual information in co-located settings. In this research, we explored the use of these displays to support collaborative engagement and exploratory tasks with visual representations. Our investigation looked at the effect of four factors (number of virtual workspaces within the display, number of displays, position arrangement of the collaborators, and collaborative modes of interaction) on learners' knowledge acquisition, engagement level, and task performance. To this end, a user study was conducted with 72 participants divided into 6 groups using an interactive tool developed to support the collaborative exploration of 3D visual structures. The results of this study showed that learners with one shared workspace and one single display can achieve better user performance and engagement levels. In addition, the back-to-back position with learners sharing their view and control of the workspaces was the most favorable. It also led to improved learning outcomes and engagement levels during the collaboration process

    Practical, appropriate, empirically-validated guidelines for designing educational games

    Get PDF
    There has recently been a great deal of interest in the potential of computer games to function as innovative educational tools. However, there is very little evidence of games fulfilling that potential. Indeed, the process of merging the disparate goals of education and games design appears problematic, and there are currently no practical guidelines for how to do so in a coherent manner. In this paper, we describe the successful, empirically validated teaching methods developed by behavioural psychologists and point out how they are uniquely suited to take advantage of the benefits that games offer to education. We conclude by proposing some practical steps for designing educational games, based on the techniques of Applied Behaviour Analysis. It is intended that this paper can both focus educational games designers on the features of games that are genuinely useful for education, and also introduce a successful form of teaching that this audience may not yet be familiar with
    corecore