578 research outputs found

    Digital curation and the cloud

    Get PDF
    Digital curation involves a wide range of activities, many of which could benefit from cloud deployment to a greater or lesser extent. These range from infrequent, resource-intensive tasks which benefit from the ability to rapidly provision resources to day-to-day collaborative activities which can be facilitated by networked cloud services. Associated benefits are offset by risks such as loss of data or service level, legal and governance incompatibilities and transfer bottlenecks. There is considerable variability across both risks and benefits according to the service and deployment models being adopted and the context in which activities are performed. Some risks, such as legal liabilities, are mitigated by the use of alternative, e.g., private cloud models, but this is typically at the expense of benefits such as resource elasticity and economies of scale. Infrastructure as a Service model may provide a basis on which more specialised software services may be provided. There is considerable work to be done in helping institutions understand the cloud and its associated costs, risks and benefits, and how these compare to their current working methods, in order that the most beneficial uses of cloud technologies may be identified. Specific proposals, echoing recent work coordinated by EPSRC and JISC are the development of advisory, costing and brokering services to facilitate appropriate cloud deployments, the exploration of opportunities for certifying or accrediting cloud preservation providers, and the targeted publicity of outputs from pilot studies to the full range of stakeholders within the curation lifecycle, including data creators and owners, repositories, institutional IT support professionals and senior manager

    Introducing mobile edge computing capabilities through distributed 5G Cloud Enabled Small Cells

    Get PDF
    Current trends in broadband mobile networks are addressed towards the placement of different capabilities at the edge of the mobile network in a centralised way. On one hand, the split of the eNB between baseband processing units and remote radio headers makes it possible to process some of the protocols in centralised premises, likely with virtualised resources. On the other hand, mobile edge computing makes use of processing and storage capabilities close to the air interface in order to deploy optimised services with minimum delay. The confluence of both trends is a hot topic in the definition of future 5G networks. The full centralisation of both technologies in cloud data centres imposes stringent requirements to the fronthaul connections in terms of throughput and latency. Therefore, all those cells with limited network access would not be able to offer these types of services. This paper proposes a solution for these cases, based on the placement of processing and storage capabilities close to the remote units, which is especially well suited for the deployment of clusters of small cells. The proposed cloud-enabled small cells include a highly efficient microserver with a limited set of virtualised resources offered to the cluster of small cells. As a result, a light data centre is created and commonly used for deploying centralised eNB and mobile edge computing functionalities. The paper covers the proposed architecture, with special focus on the integration of both aspects, and possible scenarios of application.Peer ReviewedPostprint (author's final draft

    A service-oriented architecture for scientific computing on cloud infrastructures

    Full text link
    This paper describes a service-oriented architecture that eases the process of scientific application deployment and execution in IaaS Clouds, with a focus on High Throughput Computing applications. The system integrates i) a catalogue and repository of Virtual Machine Images, ii) an application deployment and configuration tool, iii) a meta-scheduler for job execution management and monitoring. The developed system significantly reduces the time required to port a scientific application to these computational environments. This is exemplified by a case study with a computationally intensive protein design application on both a private Cloud and a hybrid three-level infrastructure (Grid, private and public Cloud).The authors wish to thank the financial support received from the Generalitat Valenciana for the project GV/2012/076 and to the Ministerio de Econom´ıa y Competitividad for the project CodeCloud (TIN2010-17804)Moltó, G.; Calatrava Arroyo, A.; Hernández García, V. (2013). A service-oriented architecture for scientific computing on cloud infrastructures. En High Performance Computing for Computational Science - VECPAR 2012. Springer Verlag (Germany). 163-176. doi:10.1007/978-3-642-38718-0_18S163176Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds. ACM SIGCOMM Computer Communication Review 39(1), 50 (2008)Armbrust, M., Fox, A., Griffith, R., Joseph, A.: Above the clouds: A berkeley view of cloud computing. Technical report, UC Berkeley Reliable Adaptive Distributed Systems Laboratory (2009)Rehr, J., Vila, F., Gardner, J., Svec, L., Prange, M.: Scientific computing in the cloud. Computing in Science 99 (2010)Keahey, K., Figueiredo, R., Fortes, J., Freeman, T., Tsugawa, M.: Science Clouds: Early Experiences in Cloud Computing for Scientific Applications. In: Cloud Computing and its Applications (2008)Carrión, J.V., Moltó, G., De Alfonso, C., Caballer, M., Hernández, V.: A Generic Catalog and Repository Service for Virtual Machine Images. In: 2nd International ICST Conference on Cloud Computing (CloudComp 2010) (2010)Moltó, G., Hernández, V., Alonso, J.: A service-oriented WSRF-based architecture for metascheduling on computational Grids. Future Generation Computer Systems 24(4), 317–328 (2008)Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., Li, W.: Design and Evaluation of Opal2: A Toolkit for Scientific Software as a Service. In: 2009 IEEE Congress on Services (2009)Distributed Management Task Force (DMTF): The Open Virtualization Format Specification (Technical report)Raman, R., Livny, M., Solomon, M.: Matchmaking: Distributed Resource Management for High Throughput Computing. In: Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing, pp. 28–31 (1998)Wei, J., Zhang, X., Ammons, G., Bala, V., Ning, P.: Managing security of virtual machine images in a cloud environment. ACM Press, New York (2009)Keahey, K., Freeman, T.: Contextualization: Providing One-Click Virtual Clusters. In: Fourth IEEE International Conference on eScience, pp. 301–308 (2008)Foster, I.: Globus toolkit version 4: Software for service-oriented systems. Journal of Computer Science and Technology 21(4), 513–520 (2006)Moltó, G., Suárez, M., Tortosa, P., Alonso, J.M., Hernández, V., Jaramillo, A.: Protein design based on parallel dimensional reduction. Journal of Chemical Information and Modeling 49(5), 1261–1271 (2009)Calatrava, A.: In: Use of Grid and Cloud Hybrid Infrastructures for Scientific Computing (M.Sc. Thesis in Spanish), Universitat Politècnica de València (2012)Keahey, K., Freeman, T., Lauret, J., Olson, D.: Virtual workspaces for scientific applications. Journal of Physics: Conference Series 78(1), 012038 (2007)Pallickara, S., Pierce, M., Dong, Q., Kong, C.: Enabling Large Scale Scientific Computations for Expressed Sequence Tag Sequencing over Grid and Cloud Computing Clusters. In: Eigth International Conference on Parallel Processing and Applied Mathematics (PPAM 2009), Citeseer (2009)Merzky, A., Stamou, K., Jha, S.: Application Level Interoperability between Clouds and Grids. In: 2009 Workshops at the Grid and Pervasive Computing Conference, pp. 143–150 (2009)Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurrency and Computation: Practice and Experience 17(2-4), 323–356 (2005)Simmhan, Y., van Ingen, C., Subramanian, G., Li, J.: Bridging the Gap between Desktop and the Cloud for eScience Applications. In: 2010 IEEE 3rd International Conference on Cloud Computing, pp. 474–481. IEEE (2010)Chappell, D.: Introducing windows azure. Technical report (2009

    Challenges to support edge-as-a-service

    Get PDF
    A new era in telecommunications is emerging. Virtualized networking functions and resources will offer network operators a way to shift the balance of expenditure from capital to operational, opening up networks to new and innovative services. This article introduces the concept of edge as a service (EaaS), a means of harnessing the flexibility of virtualized network functions and resources to enable network operators to break the tightly coupled relationship they have with their infrastructure and enable more effective ways of generating revenue. To achieve this vision, we envisage a virtualized service access interface that can be used to programmatically alter access network functions and resources available to service providers in an elastic fashion. EaaS has many technically and economically difficult challenges that must be addressed before it can become a reality; the main challenges are summarized in this article
    • …
    corecore