1,283,051 research outputs found

    Optimal design of queueing systems for using communication channels with multiple access

    Get PDF
    This article considers the mathematical model of queueing systems for the communication network with multiple access, which is used in the automated group of moving objects control systems. The dynamic communication model in the form of a single-line queuing model with the batch input claims was researched. The method of asymptotic analysis of the communication channel under a heavy load conditions was applied. As a result, the basic probabilistic characteristics of the system were obtained, including: the probability distribution of the waiting time values of the virtual claims, the average length of the queue claims at random time. It has been discovered that the characteristics of the communications models allow performing parametric optimization of communication networks, establishing the most appropriate values of the network parameters

    Optimal design of queueing systems for using communication channels with multiple access

    Get PDF
    This article considers the mathematical model of queueing systems for the communication network with multiple access, which is used in the automated group of moving objects control systems. The dynamic communication model in the form of a single-line queuing model with the batch input claims was researched. The method of asymptotic analysis of the communication channel under a heavy load conditions was applied. As a result, the basic probabilistic characteristics of the system were obtained, including: the probability distribution of the waiting time values of the virtual claims, the average length of the queue claims at random time. It has been discovered that the characteristics of the communications models allow performing parametric optimization of communication networks, establishing the most appropriate values of the network parameters

    Car-to-Smartphone Interactions: Experimental Setup, Risk Analysis and Security Technologies

    Get PDF
    International audienceVehicle access control and in particular access to in-vehicle functionalities from smart mobile devices, e.g., phones or watches, has become an increasingly relevant topic. Security plays a critical part, due to both a long history of car keys that succumbed to attacks and recently reported intrusions that use various vehicle communication interfaces to further gain access to in-vehicle safety-critical components. In this work we discuss existing technologies and functionalities that should be embedded in an experimental setup that addresses such a scenario. We make emphasis on existing cryptographic technologies, from symmetric to asymmetric primitives, identity-based cryptography and group signatures. We also discuss risks associated with in-vehicle functionalities and mitigation, e.g., intrusion detection systems

    Increasing confidence and changing behaviors in primary care providers engaged in genetic counselling.

    Get PDF
    BackgroundScreening and counseling for genetic conditions is an increasingly important part of primary care practice, particularly given the paucity of genetic counselors in the United States. However, primary care physicians (PCPs) often have an inadequate understanding of evidence-based screening; communication approaches that encourage shared decision-making; ethical, legal, and social implication (ELSI) issues related to screening for genetic mutations; and the basics of clinical genetics. This study explored whether an interactive, web-based genetics curriculum directed at PCPs in non-academic primary care settings was superior at changing practice knowledge, attitudes, and behaviors when compared to a traditional educational approach, particularly when discussing common genetic conditions.MethodsOne hundred twenty one PCPs in California and Pennsylvania physician practices were randomized to either an Intervention Group (IG) or Control Group (CG). IG physicians completed a 6 h interactive web-based curriculum covering communication skills, basics of genetic testing, risk assessment, ELSI issues and practice behaviors. CG physicians were provided with a traditional approach to Continuing Medical Education (CME) (clinical review articles) offering equivalent information.ResultsPCPs in the Intervention Group showed greater increases in knowledge compared to the Control Group. Intervention PCPs were also more satisfied with the educational materials, and more confident in their genetics knowledge and skills compared to those receiving traditional CME materials. Intervention PCPs felt that the web-based curriculum covered medical management, genetics, and ELSI issues significantly better than did the Control Group, and in comparison with traditional curricula. The Intervention Group felt the online tools offered several advantages, and engaged in better shared decision making with standardized patients, however, there was no difference in behavior change between groups with regard to increases in ELSI discussions between PCPs and patients.ConclusionWhile our intervention was deemed more enjoyable, demonstrated significant factual learning and retention, and increased shared decision making practices, there were few differences in behavior changes around ELSI discussions. Unfortunately, barriers to implementing behavior change in clinical genetics is not unique to our intervention. Perhaps the missing element is that busy physicians need systems-level support to engage in meaningful discussions around genetics issues. The next step in promoting active engagement between doctors and patients may be to put into place the tools needed for PCPs to easily access the materials they need at the point-of-care to engage in joint discussions around clinical genetics

    Distributed Stabilization of Nonlinear Multi-Agent Systems

    Get PDF
    The study of multi-agent systems (MASs) is focused on systems in which many autonomous agents interact and operate within a limited communication environment. The general goal of the MAS research is to design interconnection control laws such that all the dynamic agents in the group are synchronized to a desired common trajectory by exchanging information with adjacent agents over certain constrained communication networks. Based on the review and modification of existing results concerning the consensus control of linear heterogeneous MASs in Moreau (2004) [21], Scardovi and Sepulchre (2009) [25], Wieland et al (2011) [30], and Alvergue et al. (2013) [1], this thesis investigates the distributed stabilization of the heterogeneous MAS, consisting of N different continuous-time nonlinear dynamic systems, under connected communication graphs. The conditions for a nonlinear dynamic agent to be feedback equivalent to a strictly passive system are derived along with the feedback law. A distributed stabilization control protocol using state feedback is then proposed under the idea of feedback connection of two passive systems. It proves to be sufficient for only one or a few agents to have access to the reference signal for the MAS to achieve stability, which lowers the communication overhead from the reference to different agents. The result can be interpreted as an extension of the stabilizing law for linear MASs introduced in [1], and considered as a fundamental preliminary for the consensus research for nonlinear MASs in the future

    Distributed Cooperative Control of Multi-Agent Systems Under Detectability and Communication Constraints

    Get PDF
    Cooperative control of multi-agent systems has recently gained widespread attention from the scientific communities due to numerous applications in areas such as the formation control in unmanned vehicles, cooperative attitude control of spacecrafts, clustering of micro-satellites, environmental monitoring and exploration by mobile sensor networks, etc. The primary goal of a cooperative control problem for multi-agent systems is to design a decentralized control algorithm for each agent, relying on the local coordination of their actions to exhibit a collective behavior. Common challenges encountered in the study of cooperative control problems are unavailable group-level information, and limited bandwidth of the shared communication. In this dissertation, we investigate one of such cooperative control problems, namely cooperative output regulation, under various local and global level constraints coming from physical and communication limitations. The objective of the cooperative output regulation problem (CORP) for multi-agent systems is to design a distributed control strategy for the agents to synchronize their state with an external system, called the leader, in the presence of disturbance inputs. For the problem at hand, we additionally consider the scenario in which none of the agents can independently access the synchronization signal from their view of the leader, and therefore it is not possible for the agents to achieve the group objective by themselves unless they cooperate among members. To this end, we devise a novel distributed estimation algorithm to collectively gather the leader states under the discussed detectability constraint, and then use this estimation to synthesize a distributed control solution to the problem. Next, we extend our results in CORP to the case with uncertain agent dynamics arising from modeling errors. In addition to the detectability constraint, we also assumed that the local regulated error signals are not available to the agents for feedback, and thus none of the agents have all the required measurements to independently synthesize a control solution. By combining the distributed observer and a control law based on the internal model principle for the agents, we offer a solution to the robust CORP under these added constraints. In practical applications of multi-agent systems, it is difficult to consistently maintain a reliable communication between the agents. By considering such challenge in the communication, we study the CORP for the case when agents are connected through a time-varying communication topology. Due to the presence of the detectability constraint that none of the agents can independently access all the leader states at any switching instant, we devise a distributed estimation algorithm for the agents to collectively reconstruct the leader states. Then by using this estimation, a distributed dynamic control solution is offered to solve the CORP under the added communication constraint. Since the fixed communication network is a special case of this time-varying counterpart, the offered control solution can be viewed as a generalization of the former results. For effective validation of previous theoretical results, we apply the control algorithms to a practical case study problem on synchronizing the position of networked motors under time-varying communication. Based on our experimental results, we also demonstrate the uniqueness of derived control solutions. Another communication constraint affecting the cooperative control performance is the presence of network delays. To this regard, first we study the distributed state estimation problem of an autonomous plant by a network of observers under heterogeneous time-invariant delays and then extend to the time-varying counterpart. With the use of a low gain based estimation technique, we derive a sufficient stability condition in terms of the upper bound of the low gain parameter or the time delay to guarantee the convergence of estimation errors. Additionally, when the plant measurements are subject to bounded disturbances, we find that that the local estimation errors also remain bounded. Lastly, by using this estimation, we present a distributed control solution for a leader-follower synchronization problem of a multi-agent system. Next, we present another case study concerning a synchronization control problem of a group of distributed generators in an islanded microgrid under unknown time-varying latency. Similar to the case of delayed communication in aforementioned works, we offer a low gain based distributed control protocol to synchronize the terminal voltage and inverter operating frequency

    End user identification and accounting for multicast communication

    Get PDF
    IP multicast services, especially commercial IP multicast services, are not widely deployed. One of the important obstacles to its deployment is related to the current IP multicast model. The current IP multicast model provides by nature a non-secure, non-controlled way for end systems attached to a network to access multicast traffic. Lack of information about users and access control in this model makes it more vulnerable to different types of attacks and also creates difficulties for a service provider to generate enough revenue. The Internet Group Management Protocol (IGMP) is used by IPv4 systems and the Multicast Listener Discovery (MLD) is used by IPv6 systems, to report their IP multicast group memberships to any neighboring multicast routers. A new proposal is presented in this thesis to authenticate multicast end users and to control user access to the multicast group communication. The inter-domain security infrastructure AAA framework is incorporated, and the IGMP/MLD messages are extended, to provide user authentication and access control services. The user information in the system can enable a provider to control the distribution of the multicast traffic as well as to collect real time user accounting information

    Hierarchical Group and Attribute-Based Access Control: Incorporating Hierarchical Groups and Delegation into Attribute-Based Access Control

    Get PDF
    Attribute-Based Access Control (ABAC) is a promising alternative to traditional models of access control (i.e. Discretionary Access Control (DAC), Mandatory Access Control (MAC) and Role-Based Access control (RBAC)) that has drawn attention in both recent academic literature and industry application. However, formalization of a foundational model of ABAC and large-scale adoption is still in its infancy. The relatively recent popularity of ABAC still leaves a number of problems unexplored. Issues like delegation, administration, auditability, scalability, hierarchical representations, etc. have been largely ignored or left to future work. This thesis seeks to aid in the adoption of ABAC by filling in several of these gaps. The core contribution of this work is the Hierarchical Group and Attribute-Based Access Control (HGABAC) model, a novel formal model of ABAC which introduces the concept of hierarchical user and object attribute groups to ABAC. It is shown that HGABAC is capable of representing the traditional models of access control (MAC, DAC and RBAC) using this group hierarchy and that in many cases it’s use simplifies both attribute and policy administration. HGABAC serves as the basis upon which extensions are built to incorporate delegation into ABAC. Several potential strategies for introducing delegation into ABAC are proposed, categorized into families and the trade-offs of each are examined. One such strategy is formalized into a new User-to-User Attribute Delegation model, built as an extension to the HGABAC model. Attribute Delegation enables users to delegate a subset of their attributes to other users in an off-line manner (not requiring connecting to a third party). Finally, a supporting architecture for HGABAC is detailed including descriptions of services, high-level communication protocols and a new low-level attribute certificate format for exchanging user and connection attributes between independent services. Particular emphasis is placed on ensuring support for federated and distributed systems. Critical components of the architecture are implemented and evaluated with promising preliminary results. It is hoped that the contributions in this research will further the acceptance of ABAC in both academia and industry by solving the problem of delegation as well as simplifying administration and policy authoring through the introduction of hierarchical user groups
    corecore