32,539 research outputs found

    Ptolemaic Indexing

    Full text link
    This paper discusses a new family of bounds for use in similarity search, related to those used in metric indexing, but based on Ptolemy's inequality, rather than the metric axioms. Ptolemy's inequality holds for the well-known Euclidean distance, but is also shown here to hold for quadratic form metrics in general, with Mahalanobis distance as an important special case. The inequality is examined empirically on both synthetic and real-world data sets and is also found to hold approximately, with a very low degree of error, for important distances such as the angular pseudometric and several Lp norms. Indexing experiments demonstrate a highly increased filtering power compared to existing, triangular methods. It is also shown that combining the Ptolemaic and triangular filtering can lead to better results than using either approach on its own

    Indexing Metric Spaces for Exact Similarity Search

    Full text link
    With the continued digitalization of societal processes, we are seeing an explosion in available data. This is referred to as big data. In a research setting, three aspects of the data are often viewed as the main sources of challenges when attempting to enable value creation from big data: volume, velocity and variety. Many studies address volume or velocity, while much fewer studies concern the variety. Metric space is ideal for addressing variety because it can accommodate any type of data as long as its associated distance notion satisfies the triangle inequality. To accelerate search in metric space, a collection of indexing techniques for metric data have been proposed. However, existing surveys each offers only a narrow coverage, and no comprehensive empirical study of those techniques exists. We offer a survey of all the existing metric indexes that can support exact similarity search, by i) summarizing all the existing partitioning, pruning and validation techniques used for metric indexes, ii) providing the time and storage complexity analysis on the index construction, and iii) report on a comprehensive empirical comparison of their similarity query processing performance. Here, empirical comparisons are used to evaluate the index performance during search as it is hard to see the complexity analysis differences on the similarity query processing and the query performance depends on the pruning and validation abilities related to the data distribution. This article aims at revealing different strengths and weaknesses of different indexing techniques in order to offer guidance on selecting an appropriate indexing technique for a given setting, and directing the future research for metric indexes

    Extending the 5S Framework of Digital Libraries to support Complex Objects, Superimposed Information, and Content-Based Image Retrieval Services

    Get PDF
    Advanced services in digital libraries (DLs) have been developed and widely used to address the required capabilities of an assortment of systems as DLs expand into diverse application domains. These systems may require support for images (e.g., Content-Based Image Retrieval), Complex (information) Objects, and use of content at fine grain (e.g., Superimposed Information). Due to the lack of consensus on precise theoretical definitions for those services, implementation efforts often involve ad hoc development, leading to duplication and interoperability problems. This article presents a methodology to address those problems by extending a precisely specified minimal digital library (in the 5S framework) with formal definitions of aforementioned services. The theoretical extensions of digital library functionality presented here are reinforced with practical case studies as well as scenarios for the individual and integrative use of services to balance theory and practice. This methodology has implications that other advanced services can be continuously integrated into our current extended framework whenever they are identified. The theoretical definitions and case study we present may impact future development efforts and a wide range of digital library researchers, designers, and developers

    Semi Automated Partial Credit Grading of Programming Assignments

    Get PDF
    The grading of student programs is a time consuming process. As class sizes continue to grow, especially in entry level courses, manually grading student programs has become an even more daunting challenge. Increasing the difficulty of grading is the needs of graphical and interactive programs such as those used as part of the UNH Computer Science curriculum (and various textbooks). There are existing tools that support the grading of introductory programming assignments (TAME and Web-CAT). There are also frameworks that can be used to test student code (JUnit, Tester, and TestNG). While these programs and frameworks are helpful, they have little or no no support for programs that use real data structures or that have interactive or graphical features. In addition, the automated tests in all these tools provide only “all or nothing” evaluation. This is a significant limitation in many circumstances. Moreover, there is little or no support for dynamic alteration of grading criteria, which means that refactoring of test classes after deployment is not easily done. Our goal is to create a framework that can address these weaknesses. This framework needs to: 1. Support assignments that have interactive and graphical components. 2. Handle data structures in student programs such as lists, stacks, trees, and hash tables. 3. Be able to assign partial credit automatically when the instructor can predict errors in advance. 4. Provide additional answer clustering information to help graders identify and assign consistent partial credit for incorrect output that was not predefined. Most importantly, these tools, collectively called RPM (short for Rapid Program Management), should interface effectively with our current grading support framework without requiring large amounts of rewriting or refactoring of test code

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
    • …
    corecore